Skip to main content
Erschienen in: BMC Infectious Diseases 1/2024

Open Access 01.12.2024 | Case Report

Severe pneumonia with co-infection of H5N1 and SARS-CoV-2: a case report

verfasst von: Ke Jin, Zixing Dai, Ping Shi, Yuwen Li, Chuanlong Zhu

Erschienen in: BMC Infectious Diseases | Ausgabe 1/2024

Abstract

Background

The H5N1 influenza virus is a cause of severe pneumonia. Co-infection of influenza virus and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) may lead to poor prognosis of patients during the COVID-19 epidemic. However, reports on patients co-infected with avian influenza virus and SARS-CoV-2 are scarce.

Case presentation

A 52-year-old woman presented with a fever, which has persisted for the past eight days, along with worsening shortness of breath and decreased blood pressure. Computed tomography (CT) revealed an air bronchogram, lung consolidation, and bilateral pleural effusion. The subsequent polymerase chain reaction (PCR) of the bronchoalveolar lavage fluid (BALF) revealed positivity for H5N1 and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2).

Conclusion

The H5N1 influenza virus is a cause of severe pneumonia. The clinical presentation of the patient had a predomination of H5N1 influenza rather than COVID-19. A PCR analysis for the identification of the virus is necessary to reveal the pathogen causing the severe pneumonia. The patient exhibited an excellent prognosis upon the use of the appropriate antiviral medicine.
Begleitmaterial
Hinweise

Supplementary Information

The online version contains supplementary material available at https://​doi.​org/​10.​1186/​s12879-023-08901-w.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Background

Avian influenza virus (AIV) is a significant threat to public health as it is associated with a high mortality rate, and several novel variants of AIV also keep emerging [1]. The H5N1 virus is a subtype of AIVs that has been circulating among wild birds for the past few years. The transmission mainly occurs from animals to humans, animals to animals, and the environment to humans [2]. In humans, infection with H5N1 commonly develops into respiratory stress and pneumonia [3]. The first case of the transmission of this virus from poultry to humans was reported in 1997 in Hong Kong. Since then, several intermittent outbreaks have been reported in the human population throughout the world.
SARS-CoV-2 is another virus that has become a constant threat to global health since 2019, and it also leads to varying degrees of pneumonia [4]. Co-infection with this virus, particularly with the pathogens responsible for pneumonia, has been attracting great attention since the beginning of the pandemic of 2019. According to studies, co-infection of SARS-CoV-2 with different influenza viruses leads to a higher fatality rate compared to infection with the COVID-19 virus alone [5]. However, an extensive review of the literature revealed no case reports of such co-infection in which the category of the influenza virus was identified. In this context, the present report discusses a case of severe pneumonia caused by a co-infection of H5N1 and SARS-CoV-2 in a patient in China, the nation currently witnessing another surge in the cases of COVID-19.

Case presentation

A 52-year-old woman who has been living as a countryside resident of the Anhui province in China since her retirement developed a fever on 1 February 2023. The patient visited a local hospital, where she was prescribed antibacterial treatment using piperacillin/tazobactam and levofloxacin. However, two days later, her symptoms worsened, and she experienced shortness of breath and decreased blood pressure. The patient was immediately transferred to the emergency department of the First Affiliated Hospital of Nanjing Medical University. According to records, the patient had no history of smoking, hypertension, or diabetes upon admission.
The examinations performed at admission revealed a body temperature of 39 °C, worsening shortness of breath, a blood pressure of 104/67 mmHg, a heart rate of 103 bpm, and PaO2/FiO2 of 86 mmHg. The laboratory examination results revealed elevated C-reactive protein levels, procalcitonin lymphocyte count, and D-dimer levels (Table 1). The throat swaps for COVID-19 were negative. The coronal CT of the lung depicted multiple patchy shadows (Fig. 1A). In the axial imaging, air bronchogram was predominant in the upper lobe and the right middle lobe, along with lung consolidation and bilateral pleural effusion (Fig. 1B). Without delay, the patient was placed on a non-invasive ventilator and methylprednisolone (40 mg once daily) for the management of the severe acute respiratory distress syndrome. Subsequently, sputum samples were collected from the patient and analyzed. The culture, bacterial PCR, and fungal PCR of these sputum samples were negative. The immunological tests for tuberculosis and common respiratory pathogens were also negative. Thereafter, on the night of 7 February 2023, the patient appeared irritable and was transferred to the intensive care unit (ICU).
Table 1
Laboratory result on admission
Parameter
Result
Reference range
White blood cell
3.09 × 10^9
3.5–9.5 × 10^9/L
Lymphocyte count
0.53 × 10^9
1.10–3.20 × 10^9/L
Neutrophil count
6.95 × 10^9
1.80–6.30 × 10^9/L
D-dimer level
2.14
0-0.5 mg/L
C-reactive protein
88.7
0-10 mg/L
Procalcitonin
4.82
0-0.5ng/ml
In the ICU, the patient was placed on intratracheal intubation and mechanical ventilation. BALF samples were retrieved and subjected to metagenome next-generation sequencing (mNGS). The mNGS results were obtained three days after admission to the ICU, and the results were positive for H5N1 (Supplementary material). Therefore, a PCR analysis of the sputum and BALF samples from the patient was conducted for further identification of the virus, which confirmed the presence of the H5N1 influenza virus and presented a positive result for SARS-CoV-2. Accordingly, co-infection of H5N1 and SARS-CoV-2 was identified as the etiology of severe pneumonia in this patient. The patient was then administered Peramivir (0.6 g once daily) and nirmatrelvir-ritonavir (300 mg/100 mg, every 12 h) for the next 5 days.
After treatment with the above antivirals, the inflammation indices and the temperature of the patient improved. Thirteen days after admission to the ICU, the pulmonary inflammation had reduced, as evidenced by the CT images (Fig. 2A and B). Accordingly, mechanical ventilation was withheld, and the corticosteroid was discontinued. Twenty-seven days after admission to the ICU, the patient tested negative for both H5N1 and SARS-CoV-2 and was, therefore, discharged from the hospital.

Discussion and conclusions

The PubMed database was searched using the terms “H5N1”, “SARS-CoV-2”, and “co-infection”, and this search revealed no articles on patients having a co-infection of H5N1 and SARS-CoV-2. According to previous reports, under proper supervision, the incidence rate of avian H5N1 influenza in humans has been decreasing in the past few years [6, 7]. However, the mortality rate due to severe acute respiratory distress induced by the H5N1 virus continues to be high [3]. In China, the implementation of “zero COVID” strategies was abandoned on 7 December 2022, after which a surge was recorded in the cases of infection with the Omicron variant of the SARS-CoV-2 [8]. Co-infection of the COVID-19 virus, particularly with the other pathogens responsible for pneumonia, has been attracting great attention since the beginning of the COVID-19 pandemic. According to reports, co-infection of SARS-CoV-2 with different influenza viruses leads to a higher fatality rate compared to infection with the COVID-19 virus alone [5]. Numerous cases of infection with both SARS-CoV-2 and influenza A virus were reported during the COVID-19 epidemic, while cases of co-infection with SARS-CoV-2 and H5N1 were scarce [9]. In the case discussed in the present study, no other member of the patient’s family was infected with H5N1, except for the patient, who had been exposed to sick poultry. Therefore, it was understood that the spread of the virus was limited to animal-to-human transmission only. Accordingly, it is recommended to ensure the protection of the upper respiratory tract of humans against droplets containing AIVs, particularly during contact with infected chickens and birds.
The CT images of the patient revealed interstitial infiltrates, lung consolidation, diffuse ground-glass opacities, and air bronchogram, all of which are symptoms observed during a common viral infection [10]. The typical features of COVID-19 in CT images include bilateral multi-lobar ground-glass opacities, which were not detected in the CT images of the discussed patient. The WHO has defined two types of SARS-CoV-2 variants: the variants of concern (VOCs) and the variants of interest (VOIs). Several VOCs have caused multiple waves of epidemics, including Alpha (B.1.1.7), Beta (B.1.351), Gamma (P.1), Delta (B.1.617.2), and Omicron (B.1.1.529) [11]. The Omicron variant was first detected in China in December 2021. The prevalence of the Omicron variant in patients presented with a greater frequency of bronchial wall thickening and less-typical CT patterns [12]. However, the lesions occurring simultaneously in the central and peripheral regions of the lung and pleural effusion were uncommon in the cases of COVID-19. The clinical presentations were the same as those observed in the cases of isolated H5N1 infection and atypical for the pneumonia of COVID-19. Higher viral loads were evident in the BALF compared to the nasopharyngeal samples. Therefore, a single examination for the influenza virus, such as PCR for throat swabs, usually exhibited a relatively low sensitivity. [3]. In the event of viral pneumonia, timely antiviral treatment is key to decreasing mortality [9]. Therefore, for the case discussed in the present report, the mNGS of the BALF samples and the PCR test were performed at the earliest to verify the diagnosis, and this played a vital role in elucidating the etiology of viral pneumonia [13]. After the diagnosis, considering that the infection was caused by two viruses, the corresponding two categories of antiviral medicine were prescribed. While previous studies have demonstrated that co-infection with influenza and COVID-19 leads to a poor prognosis, the administration of both antiviral and anti-inflammation treatment in the present case could relieve lung inflammation, leading to an excellent prognosis.
In conclusion, it is important to state that co-infection of H5N1 and SARS-CoV-2 in patients may not lead to a terrible prognosis if timely treatment is administered. Indeed, influenza A virus infection can elevate ACE2 expression to promote the infectivity of SARS-CoV-2. [14] However, despite the absence of any severe or adverse events in the disease course of the present case that had a co-infection of H5N1 and SARS-CoV-2, it is recommended to ensure further precise treatment by verifying the pathogen responsible for causing severe pneumonia through various examinations.

Acknowledgements

We would like to thank the patient for their contribution to the study.

Declarations

Competing interests

The authors declare no competing interests.
Not applicable.
Written informed consent for publication of their clinical details and clinical images was obtained from the patient.
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://​creativecommons.​org/​licenses/​by/​4.​0/​. The Creative Commons Public Domain Dedication waiver (http://​creativecommons.​org/​publicdomain/​zero/​1.​0/​) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Anhänge

Electronic supplementary material

Below is the link to the electronic supplementary material.
Literatur
1.
Zurück zum Zitat Li J, Fang Y, Qiu X, Yu X, Cheng S, Li N, Sun Z, Ni Z, Wang H. Human Infection with avian-origin H5N6 Influenza a virus after exposure to slaughtered poultry. Emerg Microbes Infect. 2022;11(1):807–10.CrossRefPubMedPubMedCentral Li J, Fang Y, Qiu X, Yu X, Cheng S, Li N, Sun Z, Ni Z, Wang H. Human Infection with avian-origin H5N6 Influenza a virus after exposure to slaughtered poultry. Emerg Microbes Infect. 2022;11(1):807–10.CrossRefPubMedPubMedCentral
2.
Zurück zum Zitat Abdel-Ghafar A-N, Chotpitayasunondh T, Gao Z, Hayden FG, Nguyen DH, de Jong MD, Naghdaliyev A, Peiris JSM, Shindo N, Soeroso S, et al. Update on avian Influenza A (H5N1) virus Infection in humans. N Engl J Med. 2008;358(3):261–73.CrossRefPubMed Abdel-Ghafar A-N, Chotpitayasunondh T, Gao Z, Hayden FG, Nguyen DH, de Jong MD, Naghdaliyev A, Peiris JSM, Shindo N, Soeroso S, et al. Update on avian Influenza A (H5N1) virus Infection in humans. N Engl J Med. 2008;358(3):261–73.CrossRefPubMed
3.
Zurück zum Zitat Beigel JH, Farrar J, Han AM, Hayden FG, Hyer R, de Jong MD, Lochindarat S, Nguyen TKT, Nguyen TH, Tran TH, et al. Avian Influenza A (H5N1) Infection in humans. N Engl J Med. 2005;353(13):1374–85.CrossRefPubMed Beigel JH, Farrar J, Han AM, Hayden FG, Hyer R, de Jong MD, Lochindarat S, Nguyen TKT, Nguyen TH, Tran TH, et al. Avian Influenza A (H5N1) Infection in humans. N Engl J Med. 2005;353(13):1374–85.CrossRefPubMed
4.
Zurück zum Zitat Fiolet T, Kherabi Y, MacDonald CJ, Ghosn J, Peiffer-Smadja N. Comparing COVID-19 vaccines for their characteristics, efficacy and effectiveness against SARS-CoV-2 and variants of concern: a narrative review. Clin Microbiol Infect. 2022;28(2):202–21.CrossRefPubMed Fiolet T, Kherabi Y, MacDonald CJ, Ghosn J, Peiffer-Smadja N. Comparing COVID-19 vaccines for their characteristics, efficacy and effectiveness against SARS-CoV-2 and variants of concern: a narrative review. Clin Microbiol Infect. 2022;28(2):202–21.CrossRefPubMed
5.
Zurück zum Zitat Sarkar S, Khanna P, Singh AK. Impact of COVID-19 in patients with concurrent co-infections: a systematic review and meta-analyses. J Med Virol. 2021;93(4):2385–95.CrossRefPubMed Sarkar S, Khanna P, Singh AK. Impact of COVID-19 in patients with concurrent co-infections: a systematic review and meta-analyses. J Med Virol. 2021;93(4):2385–95.CrossRefPubMed
6.
7.
Zurück zum Zitat Shi J, Zeng X, Cui P, Yan C, Chen H. Alarming situation of emerging H5 and H7 avian Influenza and effective control strategies. Emerg Microbes Infect. 2023;12(1):2155072.CrossRefPubMed Shi J, Zeng X, Cui P, Yan C, Chen H. Alarming situation of emerging H5 and H7 avian Influenza and effective control strategies. Emerg Microbes Infect. 2023;12(1):2155072.CrossRefPubMed
8.
Zurück zum Zitat Ioannidis JPA, Zonta F, Levitt M. Estimates of COVID-19 deaths in Mainland China after abandoning zero COVID policy. Eur J Clin Invest. 2023;53(4):e13956.CrossRefPubMed Ioannidis JPA, Zonta F, Levitt M. Estimates of COVID-19 deaths in Mainland China after abandoning zero COVID policy. Eur J Clin Invest. 2023;53(4):e13956.CrossRefPubMed
9.
Zurück zum Zitat Xiang X, Wang ZH, Ye LL, He XL, Wei XS, Ma YL, Li H, Chen L, Wang XR, Zhou Q. Co-infection of SARS-COV-2 and Influenza A Virus: a Case Series and fast review. Curr Med Sci. 2021;41(1):51–7.CrossRefPubMedPubMedCentral Xiang X, Wang ZH, Ye LL, He XL, Wei XS, Ma YL, Li H, Chen L, Wang XR, Zhou Q. Co-infection of SARS-COV-2 and Influenza A Virus: a Case Series and fast review. Curr Med Sci. 2021;41(1):51–7.CrossRefPubMedPubMedCentral
10.
Zurück zum Zitat Wu X, Cai Y, Huang X, Yu X, Zhao L, Wang F, Li Q, Gu S, Xu T, Li Y, et al. Co-infection with SARS-CoV-2 and Influenza A Virus in patient with Pneumonia, China. Emerg Infect Dis. 2020;26(6):1324–6.CrossRefPubMedPubMedCentral Wu X, Cai Y, Huang X, Yu X, Zhao L, Wang F, Li Q, Gu S, Xu T, Li Y, et al. Co-infection with SARS-CoV-2 and Influenza A Virus in patient with Pneumonia, China. Emerg Infect Dis. 2020;26(6):1324–6.CrossRefPubMedPubMedCentral
11.
Zurück zum Zitat Wu Y, Kang L, Guo Z, Liu J, Liu M, Liang W. Incubation period of COVID-19 caused by Unique SARS-CoV-2 strains: a systematic review and Meta-analysis. JAMA Netw Open. 2022;5(8):e2228008.CrossRefPubMedPubMedCentral Wu Y, Kang L, Guo Z, Liu J, Liu M, Liang W. Incubation period of COVID-19 caused by Unique SARS-CoV-2 strains: a systematic review and Meta-analysis. JAMA Netw Open. 2022;5(8):e2228008.CrossRefPubMedPubMedCentral
12.
Zurück zum Zitat Tsakok MT, Watson RA, Saujani SJ, Kong M, Xie C, Peschl H, Wing L, MacLeod FK, Shine B, Talbot NP, et al. Reduction in Chest CT Severity and Improved Hospital outcomes in SARS-CoV-2 Omicron compared with Delta variant Infection. Radiology. 2023;306(1):261–9.CrossRefPubMed Tsakok MT, Watson RA, Saujani SJ, Kong M, Xie C, Peschl H, Wing L, MacLeod FK, Shine B, Talbot NP, et al. Reduction in Chest CT Severity and Improved Hospital outcomes in SARS-CoV-2 Omicron compared with Delta variant Infection. Radiology. 2023;306(1):261–9.CrossRefPubMed
13.
Zurück zum Zitat Chotpitayasunondh T, Ungchusak K, Hanshaoworakul W, Chunsuthiwat S, Sawanpanyalert P, Kijphati R, Lochindarat S, Srisan P, Suwan P, Osotthanakorn Y, et al. Human Disease from Influenza A (H5N1), Thailand, 2004. Emerg Infect Dis. 2005;11(2):201–9.CrossRefPubMedPubMedCentral Chotpitayasunondh T, Ungchusak K, Hanshaoworakul W, Chunsuthiwat S, Sawanpanyalert P, Kijphati R, Lochindarat S, Srisan P, Suwan P, Osotthanakorn Y, et al. Human Disease from Influenza A (H5N1), Thailand, 2004. Emerg Infect Dis. 2005;11(2):201–9.CrossRefPubMedPubMedCentral
14.
Zurück zum Zitat Yang J, Gong Y, Zhang C, Sun J, Wong G, Shi W, Liu W, Gao GF, Bi Y. Co-existence and co-infection of Influenza A viruses and coronaviruses: public health challenges. Innov (Camb). 2022;3(5):100306. Yang J, Gong Y, Zhang C, Sun J, Wong G, Shi W, Liu W, Gao GF, Bi Y. Co-existence and co-infection of Influenza A viruses and coronaviruses: public health challenges. Innov (Camb). 2022;3(5):100306.
Metadaten
Titel
Severe pneumonia with co-infection of H5N1 and SARS-CoV-2: a case report
verfasst von
Ke Jin
Zixing Dai
Ping Shi
Yuwen Li
Chuanlong Zhu
Publikationsdatum
01.12.2024
Verlag
BioMed Central
Erschienen in
BMC Infectious Diseases / Ausgabe 1/2024
Elektronische ISSN: 1471-2334
DOI
https://doi.org/10.1186/s12879-023-08901-w

Weitere Artikel der Ausgabe 1/2024

BMC Infectious Diseases 1/2024 Zur Ausgabe

Leitlinien kompakt für die Innere Medizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Costims – das nächste heiße Ding in der Krebstherapie?

28.05.2024 Onkologische Immuntherapie Nachrichten

„Kalte“ Tumoren werden heiß – CD28-kostimulatorische Antikörper sollen dies ermöglichen. Am besten könnten diese in Kombination mit BiTEs und Checkpointhemmern wirken. Erste klinische Studien laufen bereits.

Perioperative Checkpointhemmer-Therapie verbessert NSCLC-Prognose

28.05.2024 NSCLC Nachrichten

Eine perioperative Therapie mit Nivolumab reduziert das Risiko für Rezidive und Todesfälle bei operablem NSCLC im Vergleich zu einer alleinigen neoadjuvanten Chemotherapie um über 40%. Darauf deuten die Resultate der Phase-3-Studie CheckMate 77T.

Positiver FIT: Die Ursache liegt nicht immer im Dickdarm

27.05.2024 Blut im Stuhl Nachrichten

Immunchemischer Stuhltest positiv, Koloskopie negativ – in solchen Fällen kann die Blutungsquelle auch weiter proximal sitzen. Ein Forschungsteam hat nachgesehen, wie häufig und in welchen Lokalisationen das der Fall ist.

GLP-1-Agonisten können Fortschreiten diabetischer Retinopathie begünstigen

24.05.2024 Diabetische Retinopathie Nachrichten

Möglicherweise hängt es von der Art der Diabetesmedikamente ab, wie hoch das Risiko der Betroffenen ist, dass sich sehkraftgefährdende Komplikationen verschlimmern.

Update Innere Medizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.