Generic placeholder image

Endocrine, Metabolic & Immune Disorders - Drug Targets

Editor-in-Chief

ISSN (Print): 1871-5303
ISSN (Online): 2212-3873

Review Article

Heat Stress Nephropathy: What Have We Learned?

Author(s): Priya Jaswal, Gurfateh Singh*, Jhilli Basu and Devinder Kaur

Volume 23, Issue 7, 2023

Published on: 20 February, 2023

Page: [917 - 926] Pages: 10

DOI: 10.2174/1871530323666221208151913

Price: $65

Abstract

The unbearable heat waves that we are experiencing these days around the world are the result of increasing global warming, leading to heat stress and a constant health issue for the existing population. The thermoregulatory dysfunction of the human body due to climatological changes might result in fluid and electrolyte imbalance and transforms the human body from a normal physiological condition to a distorted pathological state. Subsequently, at one point in time, the human body may fail to handle its normal thermoregulatory function in the form of sudden unconsciousness and health defects. There might be associated dehydration that imposes renal damage, even to the extent to cause acute kidney injury (AKI), followed by chronic kidney disease (CKD). Thus, we cannot deny CKD as a major cause of death, mainly in patients having long-standing medical issues such as cardiac dysfunction, hypertension, diabetes, and obesity, heat stress nephropathy (HSN) might therefore become a major health problem. There is always a hopeful way in our hands, fortunately, which is of course prevention, that comes through government policies and human awareness. The present review brings out light on the alarming resultant facts of heat stress, dehydration, its pathology, molecular derangements, and recommendations for the prevention of heat stress nephropathy.

Keywords: Heat stress, thermoregulatory, dysfunction, heat stress, nephropathy, chronic kidney disease.

Graphical Abstract
[1]
Jaswal, P. Priyanka; Basu, J. Climatological nephropathy: an overview. Int. J. Health Sci. Res., 2021, 11(9), 83-96.
[http://dx.doi.org/10.52403/ijhsr.20210913]
[2]
Sorensen, C.; Garcia-Trabanino, R. A new era of climate medicine -addressing the heat-triggered renal disease. N. Engl. J. Med., 2019, 381(8), 693-696.
[http://dx.doi.org/10.1056/NEJMp1907859] [PMID: 31433914]
[3]
Nerbass, F.B.; Pecoits-Filho, R.; Clark, W.F.; Sontrop, J.M.; McIntyre, C.W.; Moist, L. Occupational heat stress and kidney health: from farms to factories. Kidney Int. Rep., 2017, 2(6), 998-1008.
[http://dx.doi.org/10.1016/j.ekir.2017.08.012] [PMID: 29270511]
[4]
El Khayat, M.; Halwani, D.A.; Hneiny, L.; Alameddine, I.; Haidar, M.A.; Habib, R.R. Impacts of climate change and heat stress on farmworkers health: A Scoping Review. Front. Public Health, 2022, 10(782811), 782811.
[http://dx.doi.org/10.3389/fpubh.2022.782811] [PMID: 35211437]
[5]
Fischer, E.M.; Knutti, R. Anthropogenic contribution to global occurrence of heavy-precipitation and high-temperature extremes. Nat. Clim. Chang., 2015, 5(6), 560-564.
[http://dx.doi.org/10.1038/nclimate2617]
[6]
Kovats, R.S.; Hajat, S. Heat stress and public health: a critical review. Annu. Rev. Public Health, 2008, 29(1), 41-55.
[http://dx.doi.org/10.1146/annurev.publhealth.29.020907.090843] [PMID: 18031221]
[7]
Dyer, O. CDC will explore kidney failure epidemic among agricultural workers. BMJ, 2014, 348(5), g3385.
[http://dx.doi.org/10.1136/bmj.g3385] [PMID: 24841840]
[8]
Srinivasan, K.; Maruthy, K.N.; Venugopal, V.; Ramaswamy, P. Research in occupational heat stress in India: Challenges and opportunities. Indian J. Occup. Environ. Med., 2016, 20(2), 73-78.
[http://dx.doi.org/10.4103/0019-5278.197522] [PMID: 28194079]
[9]
Sato, Y.; Roncal-Jimenez, C.A.; Andres-Hernando, A.; Jensen, T.; Tolan, D.R.; Sanchez-Lozada, L.G.; Newman, L.S.; Butler-Dawson, J.; Sorensen, C.; Glaser, J.; Miyazaki, M.; Diaz, H.F.; Ishimoto, T.; Kosugi, T.; Maruyama, S.; Garcia, G.E.; Lanaspa, M.A.; Johnson, R.J. Increase of core temperature affected the progression of kidney injury by repeated heat stress exposure. Am. J. Physiol. Renal Physiol., 2019, 317(5), F1111-F1121.
[http://dx.doi.org/10.1152/ajprenal.00259.2019] [PMID: 31390229]
[10]
Parson, K. Human Thermal Environments: The effects of hot, moderate and cold environments on human health, comfort and performance. 3rd edi; CRC Press: New York, 2002, pp. 1-16.
[http://dx.doi.org/10.1201/9781420025248.ch1]
[11]
Nag, P.K.; Nag, A.; Ashtekar, S.P. Thermal limits of men in moderate to heavy work in tropical farming. Ind. Health, 2007, 45(1), 107-117.
[http://dx.doi.org/10.2486/indhealth.45.107] [PMID: 17284882]
[12]
Gardiner, K.; Harrington, M. Occupational Hygiene. The thermal environment, 3rd ed; Wiley Publication: Birmingham, 2005, pp. 1-25.
[http://dx.doi.org/10.1002/9780470755075]
[13]
Chapman, C.L.; Johnson, B.D.; Vargas, N.T.; Hostler, D.; Parker, M.D.; Schlader, Z.J. Both hyperthermia and dehydration during physical work in the heat contribute to the risk of acute kidney injury. J. Appl. Physiol., 2020, 128(4), 715-728.
[http://dx.doi.org/10.1152/japplphysiol.00787.2019] [PMID: 32078468]
[14]
González-Alonso, J.; Crandall, C.G.; Johnson, J.M. The cardiovascular challenge of exercising in the heat. J. Physiol., 2008, 586(1), 45-53.
[http://dx.doi.org/10.1113/jphysiol.2007.142158] [PMID: 17855754]
[15]
Miller, V.; Bates, G.; Schneider, J.D.; Thomsen, J. Self-pacing as a protective mechanism against the effects of heat stress. Ann. Occup. Hyg., 2011, 55(5), 548-555.
[http://dx.doi.org/10.1093/annhyg/mer012] [PMID: 21474543]
[16]
Iguchi, M.; Littmann, A.E.; Chang, S.H.; Wester, L.A.; Knipper, J.S.; Shields, R.K. Heat stress and cardiovascular, hormonal, and heat shock proteins in humans. J. Athl. Train., 2012, 47(2), 184-190.
[http://dx.doi.org/10.4085/1062-6050-47.2.184] [PMID: 22488284]
[17]
Xiao, C.; Chen, S.; Li, J.; Hai, T.; Lu, Q.; Sun, E.; Wang, R.; Tanguay, R.M.; Wu, T. Association of HSP70 and genotoxic damage in lymphocytes of workers exposed to coke-oven emission. Cell Stress Chaperones, 2002, 7(4), 396-402.
[http://dx.doi.org/10.1379/1466-1268(2002)007<0396:AOHAGD>2.0.CO;2] [PMID: 12653484]
[18]
Roncal-Jimenez, C.A.; Sato, Y.; Milagres, T.; Andres Hernando, A.; García, G.; Bjornstad, P.; Dawson, J.B.; Sorensen, C.; Newman, L.; Krisher, L.; Madero, M.; Glaser, J.; Gárcía-Trabanino, R.; Romero, E.J.; Song, Z.; Jensen, T.; Kuwabara, M.; Rodriguez-Iturbe, B.; Sanchez-Lozada, L.G.; Lanaspa, M.A.; Johnson, R.J. Experimental heat stress nephropathy and liver injury are improved by allopurinol. Am. J. Physiol. Renal Physiol., 2018, 315(3), F726-F733.
[http://dx.doi.org/10.1152/ajprenal.00543.2017] [PMID: 29667911]
[19]
Sánchez-Lozada, L.G.; Soto, V.; Tapia, E.; Avila-Casado, C.; Sautin, Y.Y.; Nakagawa, T.; Franco, M.; Rodríguez-Iturbe, B.; Johnson, R.J. Role of oxidative stress in the renal abnormalities induced by experimental hyperuricemia. Am. J. Physiol. Renal Physiol., 2008, 295(4), F1134-F1141.
[http://dx.doi.org/10.1152/ajprenal.00104.2008] [PMID: 18701632]
[20]
Ryu, E.S.; Kim, M.J.; Shin, H.S.; Jang, Y.H.; Choi, H.S.; Jo, I.; Johnson, R.J.; Kang, D.H. Uric acid-induced phenotypic transition of renal tubular cells as a novel mechanism of chronic kidney disease. Am. J. Physiol. Renal Physiol., 2013, 304(5), F471-F480.
[http://dx.doi.org/10.1152/ajprenal.00560.2012] [PMID: 23283992]
[21]
Sánchez-Lozada, L.G.; Lanaspa, M.A.; Cristóbal-García, M.; García-Arroyo, F.; Soto, V.; Cruz-Robles, D.; Nakagawa, T.; Yu, M.A.; Kang, D.H.; Johnson, R.J. Uric acid-induced endothelial dysfunction is associated with mitochondrial alterations and decreased intracellular ATP concentrations. Nephron, Exp. Nephrol., 2013, 121(3-4), e71-e78.
[http://dx.doi.org/10.1159/000345509] [PMID: 23235493]
[22]
Johnson, R.J.; Rodriguez-Iturbe, B.; Roncal-Jimenez, C.; Lanaspa, M.A.; Ishimoto, T.; Nakagawa, T.; Correa-Rotter, R.; Wesseling, C.; Bankir, L.; Sanchez-Lozada, L.G. Hyperosmolarity drives hypertension and CKD-water and salt revisited. Nat. Rev. Nephrol., 2014, 10(7), 415-420.
[http://dx.doi.org/10.1038/nrneph.2014.76] [PMID: 24802066]
[23]
Hasanvand, A.; Kharazmkia, A.; Mir, S.; Khorramabadi, R.; Darabi, S. Ameliorative effect of ferulic acid on gentamicin induced nephrotoxicity in a rat model; role of antioxidant effects. Nutrit. Health Res. Centre., 2018, 7(2), 73-77.
[24]
Sabarudin, A.; Sakti, S.P. Aulanni’am; Susianti, H.; Samsu, N.; Wulandari, I.O.; Oktanella, Y.; Anggraeni, D. Recent advances in nephropathy biomarker detections using paper-based analytical devices. Anal. Sci., 2022, 38(1), 39-54.
[http://dx.doi.org/10.2116/analsci.21SAR10] [PMID: 35287205]
[25]
Wegman, D.H.; Apelqvist, J.; Bottai, M.; Ekström, U.; García-Trabanino, R.; Glaser, J.; Hogstedt, C.; Jakobsson, K.; Jarquín, E.; Lucas, R.A.I.; Weiss, I.; Wesseling, C.; Bodin, T. Intervention to diminish dehydration and kidney damage among sugarcane workers. Scand. J. Work Environ. Health, 2018, 44(1), 16-24.
[http://dx.doi.org/10.5271/sjweh.3659] [PMID: 28691728]
[26]
Bodin, T.; García-Trabanino, R.; Weiss, I.; Jarquín, E.; Glaser, J.; Jakobsson, K.; Lucas, R A I.; Wesseling, C.; Hogstedt, C.; Wegman, D.H. Intervention to reduce heat stress and improve efficiency among sugarcane workers in El Salvador: Phase 1. Occup. Environ. Med., 2016, 73(6), 409-416.
[http://dx.doi.org/10.1136/oemed-2016-103555] [PMID: 27073211]
[27]
Gifford, F.J.; Gifford, R.M.; Eddleston, M.; Dhaun, N. Endemic nephropathy around the world. Kidney Int. Rep., 2017, 2(2), 282-292.
[http://dx.doi.org/10.1016/j.ekir.2016.11.003] [PMID: 28367535]
[28]
Watts, N.; Amann, M.; Ayeb-Karlsson, S.; Belesova, K.; Bouley, T.; Boykoff, M.; Byass, P.; Cai, W.; Campbell-Lendrum, D.; Chambers, J.; Cox, P.M.; Daly, M.; Dasandi, N.; Davies, M.; Depledge, M.; Depoux, A.; Dominguez-Salas, P.; Drummond, P.; Ekins, P.; Flahault, A.; Frumkin, H.; Georgeson, L.; Ghanei, M.; Grace, D.; Graham, H.; Grojsman, R.; Haines, A.; Hamilton, I.; Hartinger, S.; Johnson, A.; Kelman, I.; Kiesewetter, G.; Kniveton, D.; Liang, L.; Lott, M.; Lowe, R.; Mace, G.; Odhiambo Sewe, M.; Maslin, M.; Mikhaylov, S.; Milner, J.; Latifi, A.M.; Moradi-Lakeh, M.; Morrissey, K.; Murray, K.; Neville, T.; Nilsson, M.; Oreszczyn, T.; Owfi, F.; Pencheon, D.; Pye, S.; Rabbaniha, M.; Robinson, E.; Rocklöv, J.; Schütte, S.; Shumake-Guillemot, J.; Steinbach, R.; Tabatabaei, M.; Wheeler, N.; Wilkinson, P.; Gong, P.; Montgomery, H.; Costello, A. The Lancet Countdown on health and climate change: from 25 years of inaction to a global transformation for public health. Lancet, 2018, 391(10120), 581-630.
[http://dx.doi.org/10.1016/S0140-6736(17)32464-9] [PMID: 29096948]
[29]
Wang, H.; Naghavi, M.; Allen, C.; Barber, R.M.; Bhutta, Z.A.; Carter, A.; Casey, D.C.; Charlson, F.J.; Chen, A.Z.; Coates, M.M.; Coggeshall, M.; Dandona, L.; Dicker, D.J.; Erskine, H.E.; Ferrari, A.J.; Fitzmaurice, C.; Foreman, K.; Forouzanfar, M.H.; Fraser, M.S.; Fullman, N.; Gething, P.W.; Goldberg, E.M.; Graetz, N.; Haagsma, J.A.; Hay, S.I.; Huynh, C.; Johnson, C.O.; Kassebaum, N.J.; Kinfu, Y.; Kulikoff, X.R.; Kutz, M.; Kyu, H.H.; Larson, H.J.; Leung, J.; Liang, X.; Lim, S.S.; Lind, M.; Lozano, R.; Marquez, N.; Mensah, G.A.; Mikesell, J.; Mokdad, A.H.; Mooney, M.D.; Nguyen, G.; Nsoesie, E.; Pigott, D.M.; Pinho, C.; Roth, G.A.; Salomon, J.A.; Sandar, L.; Silpakit, N.; Sligar, A.; Sorensen, R.J.D.; Stanaway, J.; Steiner, C.; Teeple, S.; Thomas, B.A.; Troeger, C.; VanderZanden, A.; Vollset, S.E.; Wanga, V.; Whiteford, H.A.; Wolock, T.; Zoeckler, L.; Abate, K.H.; Abbafati, C.; Abbas, K.M.; Abd-Allah, F.; Abera, S.F.; Abreu, D.M.X.; Abu-Raddad, L.J.; Abyu, G.Y.; Achoki, T.; Adelekan, A.L.; Ademi, Z.; Adou, A.K.; Adsuar, J.C.; Afanvi, K.A.; Afshin, A.; Agardh, E.E.; Agarwal, A.; Agrawal, A.; Kiadaliri, A.A.; Ajala, O.N.; Akanda, A.S.; Akinyemi, R.O.; Akinyemiju, T.F.; Akseer, N.; Lami, F.H.A.; Alabed, S.; Al-Aly, Z.; Alam, K.; Alam, N.K.M.; Alasfoor, D.; Aldhahri, S.F.; Aldridge, R.W.; Alegretti, M.A.; Aleman, A.V.; Alemu, Z.A.; Alexander, L.T.; Alhabib, S.; Ali, R.; Alkerwi, A.; Alla, F.; Allebeck, P.; Al-Raddadi, R.; Alsharif, U.; Altirkawi, K.A.; Martin, E.A.; Alvis-Guzman, N.; Amare, A.T.; Amegah, A.K.; Ameh, E.A.; Amini, H.; Ammar, W.; Amrock, S.M.; Andersen, H.H.; Anderson, B.O.; Anderson, G.M.; Antonio, C.A.T.; Aregay, A.F.; Ärnlöv, J.; Arsenijevic, V.S.A.; Artaman, A.; Asayesh, H.; Asghar, R.J.; Atique, S.; Avokpaho, E.F.G.A.; Awasthi, A.; Azzopardi, P.; Bacha, U.; Badawi, A.; Bahit, M.C.; Balakrishnan, K.; Banerjee, A.; Barac, A.; Barker-Collo, S.L.; Bärnighausen, T.; Barregard, L.; Barrero, L.H.; Basu, A.; Basu, S.; Bayou, Y.T.; Bazargan-Hejazi, S.; Beardsley, J.; Bedi, N.; Beghi, E.; Belay, H.A.; Bell, B.; Bell, M.L.; Bello, A.K.; Bennett, D.A.; Bensenor, I.M.; Berhane, A.; Bernabé, E.; Betsu, B.D.; Beyene, A.S.; Bhala, N.; Bhalla, A.; Biadgilign, S.; Bikbov, B.; Abdulhak, A.A.B.; Biroscak, B.J.; Biryukov, S.; Bjertness, E.; Blore, J.D.; Blosser, C.D.; Bohensky, M.A.; Borschmann, R.; Bose, D.; Bourne, R.R.A.; Brainin, M.; Brayne, C.E.G.; Brazinova, A.; Breitborde, N.J.K.; Brenner, H.; Brewer, J.D.; Brown, A.; Brown, J.; Brugha, T.S.; Buckle, G.C.; Butt, Z.A.; Calabria, B.; Campos-Nonato, I.R.; Campuzano, J.C.; Carapetis, J.R.; Cárdenas, R.; Carpenter, D.O.; Carrero, J.J.; Castañeda-Orjuela, C.A.; Rivas, J.C.; Catalá-López, F.; Cavalleri, F.; Cercy, K.; Cerda, J.; Chen, W.; Chew, A.; Chiang, P.P-C.; Chibalabala, M.; Chibueze, C.E.; Chimed-Ochir, O.; Chisumpa, V.H.; Choi, J-Y.J.; Chowdhury, R.; Christensen, H.; Christopher, D.J.; Ciobanu, L.G.; Cirillo, M.; Cohen, A.J.; Colistro, V.; Colomar, M.; Colquhoun, S.M.; Cooper, C.; Cooper, L.T.; Cortinovis, M.; Cowie, B.C.; Crump, J.A.; Damsere-Derry, J.; Danawi, H.; Dandona, R.; Daoud, F.; Darby, S.C.; Dargan, P.I. das Neves, J.; Davey, G.; Davis, A.C.; Davitoiu, D.V.; de Castro, E.F.; de Jager, P.; Leo, D.D.; Degenhardt, L.; Dellavalle, R.P.; Deribe, K.; Deribew, A.; Dharmaratne, S.D.; Dhillon, P.K.; Diaz-Torné, C.; Ding, E.L.; dos Santos, K.P.B.; Dossou, E.; Driscoll, T.R.; Duan, L.; Dubey, M.; Duncan, B.B.; Ellenbogen, R.G.; Ellingsen, C.L.; Elyazar, I.; Endries, A.Y.; Ermakov, S.P.; Eshrati, B.; Esteghamati, A.; Estep, K.; Faghmous, I.D.A.; Fahimi, S.; Faraon, E.J.A.; Farid, T.A.; Farinha, C.S.S.; Faro, A.; Farvid, M.S.; Farzadfar, F.; Feigin, V.L.; Fereshtehnejad, S-M.; Fernandes, J.G.; Fernandes, J.C.; Fischer, F.; Fitchett, J.R.A.; Flaxman, A.; Foigt, N.; Fowkes, F.G.R.; Franca, E.B.; Franklin, R.C.; Friedman, J.; Frostad, J.; Fürst, T.; Futran, N.D.; Gall, S.L.; Gambashidze, K.; Gamkrelidze, A.; Ganguly, P.; Gankpé, F.G.; Gebre, T.; Gebrehiwot, T.T.; Gebremedhin, A.T.; Gebru, A.A.; Geleijnse, J.M.; Gessner, B.D.; Ghoshal, A.G.; Gibney, K.B.; Gillum, R.F.; Gilmour, S.; Giref, A.Z.; Giroud, M.; Gishu, M.D.; Giussani, G.; Glaser, E.; Godwin, W.W.; Gomez-Dantes, H.; Gona, P.; Goodridge, A.; Gopalani, S.V.; Gosselin, R.A.; Gotay, C.C.; Goto, A.; Gouda, H.N.; Greaves, F.; Gugnani, H.C.; Gupta, R.; Gupta, R.; Gupta, V.; Gutiérrez, R.A.; Hafezi-Nejad, N.; Haile, D.; Hailu, A.D.; Hailu, G.B.; Halasa, Y.A.; Hamadeh, R.R.; Hamidi, S.; Hancock, J.; Handal, A.J.; Hankey, G.J.; Hao, Y.; Harb, H.L.; Harikrishnan, S.; Haro, J.M.; Havmoeller, R.; Heckbert, S.R.; Heredia-Pi, I.B.; Heydarpour, P.; Hilderink, H.B.M.; Hoek, H.W.; Hogg, R.S.; Horino, M.; Horita, N.; Hosgood, H.D.; Hotez, P.J.; Hoy, D.G.; Hsairi, M.; Htet, A.S.; Htike, M.M.T.; Hu, G.; Huang, C.; Huang, H.; Huiart, L.; Husseini, A.; Huybrechts, I.; Huynh, G.; Iburg, K.M.; Innos, K.; Inoue, M.; Iyer, V.J.; Jacobs, T.A.; Jacobsen, K.H.; Jahanmehr, N.; Jakovljevic, M.B.; James, P.; Javanbakht, M.; Jayaraman, S.P.; Jayatilleke, A.U.; Jeemon, P.; Jensen, P.N.; Jha, V.; Jiang, G.; Jiang, Y.; Jibat, T.; Jimenez-Corona, A.; Jonas, J.B.; Joshi, T.K.; Kabir, Z.; Kamal, R.; Kan, H.; Kant, S.; Karch, A.; Karema, C.K.; Karimkhani, C.; Karletsos, D.; Karthikeyan, G.; Kasaeian, A.; Katibeh, M.; Kaul, A.; Kawakami, N.; Kayibanda, J.F.; Keiyoro, P.N.; Kemmer, L.; Kemp, A.H.; Kengne, A.P.; Keren, A.; Kereselidze, M.; Kesavachandran, C.N.; Khader, Y.S.; Khalil, I.A.; Khan, A.R.; Khan, E.A.; Khang, Y-H.; Khera, S.; Khoja, T.A.M.; Kieling, C.; Kim, D.; Kim, Y.J.; Kissela, B.M.; Kissoon, N.; Knibbs, L.D.; Knudsen, A.K.; Kokubo, Y.; Kolte, D.; Kopec, J.A.; Kosen, S.; Koul, P.A.; Koyanagi, A.; Krog, N.H.; Defo, B.K.; Bicer, B.K.; Kudom, A.A.; Kuipers, E.J.; Kulkarni, V.S.; Kumar, G.A.; Kwan, G.F.; Lal, A.; Lal, D.K.; Lalloo, R.; Lallukka, T.; Lam, H.; Lam, J.O.; Langan, S.M.; Lansingh, V.C.; Larsson, A.; Laryea, D.O.; Latif, A.A.; Lawrynowicz, A.E.B.; Leigh, J.; Levi, M.; Li, Y.; Lindsay, M.P.; Lipshultz, S.E.; Liu, P.Y.; Liu, S.; Liu, Y.; Lo, L-T.; Logroscino, G.; Lotufo, P.A.; Lucas, R.M.; Lunevicius, R.; Lyons, R.A.; Ma, S.; Machado, V.M.P.; Mackay, M.T.; MacLachlan, J.H.; Razek, H.M.A.E.; Magdy, M.; Razek, A.E.; Majdan, M.; Majeed, A.; Malekzadeh, R.; Manamo, W.A.A.; Mandisarisa, J.; Mangalam, S.; Mapoma, C.C.; Marcenes, W.; Margolis, D.J.; Martin, G.R.; Martinez-Raga, J.; Marzan, M.B.; Masiye, F.; Mason-Jones, A.J.; Massano, J.; Matzopoulos, R.; Mayosi, B.M.; McGarvey, S.T.; McGrath, J.J.; McKee, M.; McMahon, B.J.; Meaney, P.A.; Mehari, A.; Mehndiratta, M.M.; Mejia-Rodriguez, F.; Mekonnen, A.B.; Melaku, Y.A.; Memiah, P.; Memish, Z.A.; Mendoza, W.; Meretoja, A.; Meretoja, T.J.; Mhimbira, F.A.; Micha, R.; Millear, A.; Miller, T.R.; Mirarefin, M.; Misganaw, A.; Mock, C.N.; Mohammad, K.A.; Mohammadi, A.; Mohammed, S.; Mohan, V.; Mola, G.L.D.; Monasta, L.; Hernandez, J.C.M.; Montero, P.; Montico, M.; Montine, T.J.; Moradi-Lakeh, M.; Morawska, L.; Morgan, K.; Mori, R.; Mozaffarian, D.; Mueller, U.O.; Murthy, G.V.S.; Murthy, S.; Musa, K.I.; Nachega, J.B.; Nagel, G.; Naidoo, K.S.; Naik, N.; Naldi, L.; Nangia, V.; Nash, D.; Nejjari, C.; Neupane, S.; Newton, C.R.; Newton, J.N.; Ng, M.; Ngalesoni, F.N.; de Dieu Ngirabega, J.; Nguyen, Q.L.; Nisar, M.I.; Pete, P.M.N.; Nomura, M.; Norheim, O.F.; Norman, P.E.; Norrving, B.; Nyakarahuka, L.; Ogbo, F.A.; Ohkubo, T.; Ojelabi, F.A.; Olivares, P.R.; Olusanya, B.O.; Olusanya, J.O.; Opio, J.N.; Oren, E.; Ortiz, A.; Osman, M.; Ota, E.; Ozdemir, R.; Pa, M.; Pain, A.; Pandian, J.D.; Pant, P.R.; Papachristou, C.; Park, E-K.; Park, J-H.; Parry, C.D.; Parsaeian, M.; Caicedo, A.J.P.; Patten, S.B.; Patton, G.C.; Paul, V.K.; Pearce, N.; Pedro, J.M.; Stokic, L.P.; Pereira, D.M.; Perico, N.; Pesudovs, K.; Petzold, M.; Phillips, M.R.; Piel, F.B.; Pillay, J.D.; Plass, D.; Platts-Mills, J.A.; Polinder, S.; Pope, C.A.; Popova, S.; Poulton, R.G.; Pourmalek, F.; Prabhakaran, D.; Qorbani, M.; Quame-Amaglo, J.; Quistberg, D.A.; Rafay, A.; Rahimi, K.; Rahimi-Movaghar, V.; Rahman, M.; Rahman, M.H.U.; Rahman, S.U.; Rai, R.K.; Rajavi, Z.; Rajsic, S.; Raju, M.; Rakovac, I.; Rana, S.M.; Ranabhat, C.L.; Rangaswamy, T.; Rao, P.; Rao, S.R.; Refaat, A.H.; Rehm, J.; Reitsma, M.B.; Remuzzi, G.; Resnikoff, S.; Ribeiro, A.L.; Ricci, S.; Blancas, M.J.R.; Roberts, B.; Roca, A.; Rojas-Rueda, D.; Ronfani, L.; Roshandel, G.; Rothenbacher, D.; Roy, A.; Roy, N.K.; Ruhago, G.M.; Sagar, R.; Saha, S.; Sahathevan, R.; Saleh, M.M.; Sanabria, J.R.; Sanchez-Niño, M.D.; Sanchez-Riera, L.; Santos, I.S.; Sarmiento-Suarez, R.; Sartorius, B.; Satpathy, M.; Savic, M.; Sawhney, M.; Schaub, M.P.; Schmidt, M.I.; Schneider, I.J.C.; Schöttker, B.; Schutte, A.E.; Schwebel, D.C.; Seedat, S.; Sepanlou, S.G.; Servan-Mori, E.E.; Shackelford, K.A.; Shaddick, G.; Shaheen, A.; Shahraz, S.; Shaikh, M.A.; Shakh-Nazarova, M.; Sharma, R.; She, J.; Sheikhbahaei, S.; Shen, J.; Shen, Z.; Shepard, D.S.; Sheth, K.N.; Shetty, B.P.; Shi, P.; Shibuya, K.; Shin, M-J.; Shiri, R.; Shiue, I.; Shrime, M.G.; Sigfusdottir, I.D.; Silberberg, D.H.; Silva, D.A.S.; Silveira, D.G.A.; Silverberg, J.I.; Simard, E.P.; Singh, A.; Singh, G.M.; Singh, J.A.; Singh, O.P.; Singh, P.K.; Singh, V.; Soneji, S.; Søreide, K.; Soriano, J.B.; Sposato, L.A.; Sreeramareddy, C.T.; Stathopoulou, V.; Stein, D.J.; Stein, M.B.; Stranges, S.; Stroumpoulis, K.; Sunguya, B.F.; Sur, P.; Swaminathan, S.; Sykes, B.L.; Szoeke, C.E.I.; Tabarés-Seisdedos, R.; Tabb, K.M.; Takahashi, K.; Takala, J.S.; Talongwa, R.T.; Tandon, N.; Tavakkoli, M.; Taye, B.; Taylor, H.R.; Ao, B.J.T.; Tedla, B.A.; Tefera, W.M.; Have, M.T.; Terkawi, A.S.; Tesfay, F.H.; Tessema, G.A.; Thomson, A.J.; Thorne-Lyman, A.L.; Thrift, A.G.; Thurston, G.D.; Tillmann, T.; Tirschwell, D.L.; Tonelli, M.; Topor-Madry, R.; Topouzis, F.; Towbin, J.A.; Traebert, J.; Tran, B.X.; Truelsen, T.; Trujillo, U.; Tura, A.K.; Tuzcu, E.M.; Uchendu, U.S.; Ukwaja, K.N.; Undurraga, E.A.; Uthman, O.A.; Dingenen, R.V.; van Donkelaar, A.; Vasankari, T.; Vasconcelos, A.M.N.; Venketasubramanian, N.; Vidavalur, R.; Vijayakumar, L.; Villalpando, S.; Violante, F.S.; Vlassov, V.V.; Wagner, J.A.; Wagner, G.R.; Wallin, M.T.; Wang, L.; Watkins, D.A.; Weichenthal, S.; Weiderpass, E.; Weintraub, R.G.; Werdecker, A.; Westerman, R.; White, R.A.; Wijeratne, T.; Wilkinson, J.D.; Williams, H.C.; Wiysonge, C.S.; Woldeyohannes, S.M.; Wolfe, C.D.A.; Won, S.; Wong, J.Q.; Woolf, A.D.; Xavier, D.; Xiao, Q.; Xu, G.; Yakob, B.; Yalew, A.Z.; Yan, L.L.; Yano, Y.; Yaseri, M.; Ye, P.; Yebyo, H.G.; Yip, P.; Yirsaw, B.D.; Yonemoto, N.; Yonga, G.; Younis, M.Z.; Yu, S.; Zaidi, Z.; Zaki, M.E.S.; Zannad, F.; Zavala, D.E.; Zeeb, H.; Zeleke, B.M.; Zhang, H.; Zodpey, S.; Zonies, D.; Zuhlke, L.J.; Vos, T.; Lopez, A.D.; Murray, C.J.L. Global, regional, and national life expectancy, all-cause mortality, and cause-specific mortality for 249 causes of death, 1980–2015: a systematic analysis for the Global Burden of Disease Study 2015. Lancet, 2016, 388(10053), 1459-1544.
[http://dx.doi.org/10.1016/S0140-6736(16)31012-1] [PMID: 27733281]
[30]
Rikkert, M.G.M.O.; Melis, R.J.F.; Claassen, J.A.H.R. Heat waves and dehydration in the elderly. BMJ, 2009, 339(7), b2663.
[http://dx.doi.org/10.1136/bmj.b2663] [PMID: 19574318]
[31]
Lundgren, K.; Kuklane, K.; Gao, C.; Holmér, I. Effects of heat stress on working populations when facing climate change. Ind. Health, 2013, 51(1), 3-15.
[http://dx.doi.org/10.2486/indhealth.2012-0089] [PMID: 23411752]
[32]
Anderson, G.B.; Bell, M.L. Heat waves in the United States: mortality risk during heat waves and effect modification by heat wave characteristics in 43 U.S. communities. Environ. Health Perspect., 2011, 119(2), 210-218.
[http://dx.doi.org/10.1289/ehp.1002313] [PMID: 21084239]
[33]
Mahant, S. The evaluation and management of heat injuries in an intensive care unit. Indian J. Crit. Care Med., 2015, 19(8), 479-483.
[http://dx.doi.org/10.4103/0972-5229.162470] [PMID: 26321809]
[34]
Weiner, D.E.; McClean, M.D.; Kaufman, J.S.; Brooks, D.R. The Central American Epidemic of CKD. Clin. J. Am. Soc. Nephrol., 2013, 8(3), 504-511.
[http://dx.doi.org/10.2215/CJN.05050512] [PMID: 23099656]
[35]
Wesseling, C.; Crowe, J.; Hogstedt, C.; Jakobsson, K.; Lucas, R.; Wegman, D.H. Resolving the enigma of the mesoamerican nephropathy: a research workshop summary. Am. J. Kidney Dis., 2014, 63(3), 396-404.
[http://dx.doi.org/10.1053/j.ajkd.2013.08.014] [PMID: 24140367]
[36]
Roncal-Jimenez, C.; Lanaspa, M.A.; Jensen, T.; Sanchez-Lozada, L.G.; Johnson, R.J. Mechanisms by which dehydration may lead to chronic kidney disease. Ann. Nutr. Metab., 2015, 66(S3), 10-13.
[http://dx.doi.org/10.1159/000381239] [PMID: 26088040]
[37]
Zhong, N.S.; Zheng, B.J.; Li, Y.M.; Poon, L.L.M.; Xie, Z.H.; Chan, K.H.; Li, P.H.; Tan, S.Y.; Chang, Q.; Xie, J.P.; Liu, X.Q.; Xu, J.; Li, D.X.; Yuen, K.Y.; Peiris, J.S.M.; Guan, Y. Epidemiology and cause of Severe Acute Respiratory Syndrome (SARS) in Guangdong, People’s Republic of China, in February, 2003. Lancet, 2003, 362(9393), 1353-1358.
[http://dx.doi.org/10.1016/S0140-6736(03)14630-2] [PMID: 14585636]
[38]
Liu, J.; Xie, W.; Wang, Y.; Xiong, Y.; Chen, S.; Han, J.; Wu, Q. A comparative overview of COVID-19, MERS and SARS: Review article. Int. J. Surg., 2020, 81, 1-8.
[http://dx.doi.org/10.1016/j.ijsu.2020.07.032] [PMID: 32730205]
[39]
Rana, M.; Singla, S.; Jaswal, P.; Singh, G. Coronavirus to covid-19 pandemic: an overview. IJPSR, 2021, 12(3), 1332-1341.
[40]
Jaswal, P.; Singla, S.; Kaushik, N.; Guleri, T.S. Technology as a psychological healer: a digital war against COVID-19. Int. J. Pharm. Sci. Rev. Res., 2020, 64(1), 165-172.
[http://dx.doi.org/10.47583/ijpsrr.2020.v64i01.030]
[41]
Hoernke, K.; Djellouli, N.; Andrews, L.; Lewis-Jackson, S.; Manby, L.; Martin, S.; Vanderslott, S.; Vindrola-Padros, C. Frontline healthcare workers’ experiences with personal protective equipment during the COVID-19 pandemic in the UK: a rapid qualitative appraisal. BMJ Open, 2021, 11(1), e046199.
[http://dx.doi.org/10.1136/bmjopen-2020-046199] [PMID: 33472794]
[42]
Rana, M.; Singla, S.; Jaswal, P.; Singh, G. Historical journey of coronavirus to COVID-19 pandemic: an overview. Innov. Pharm. Pharmacother., 2020, 8(4), 128-134.
[43]
Zwolińska, M.; Bogdan, A. Thermal sensations of surgeons during work in surgical gowns. Int. J. Occup. Saf. Ergon., 2013, 19(3), 443-453.
[http://dx.doi.org/10.1080/10803548.2013.11077000] [PMID: 24034872]
[44]
Zwolińska, M.; Bogdan, A. Impact of the medical clothing on the thermal stress of surgeons. Appl. Ergon., 2012, 43(6), 1096-1104.
[http://dx.doi.org/10.1016/j.apergo.2012.03.011] [PMID: 22575493]
[45]
Coca, A.; Quinn, T.; Kim, J.H.; Wu, T.; Powell, J.; Roberge, R.; Shaffer, R. Physiological evaluation of personal protective ensembles recommended for use in West Africa. Disaster Med. Public Health Prep., 2017, 11(5), 580-586.
[http://dx.doi.org/10.1017/dmp.2017.13] [PMID: 28303774]
[46]
Grélot, L.; Koulibaly, F.; Maugey, N.; Janvier, F.; Foissaud, V.; Aletti, M.; Savini, H.; Cotte, J.; Dampierre, H.; Granier, H.; Carmoi, T.; Sagui, E. Moderate thermal strain in healthcare workers wearing personal protective equipment during treatment and care activities in the context of the 2014 Ebola virus disease outbreak. J. Infect. Dis., 2016, 213(9), 1462-1465.
[http://dx.doi.org/10.1093/infdis/jiv585] [PMID: 26655297]
[47]
White, S.; Chadban, S.J.; Jan, S.; Chapman, J.R.; Cass, A. How can we achieve global equity in provision of renal replacement therapy? Bull. World Health Organ., 2008, 86(3), 229-237.
[http://dx.doi.org/10.2471/BLT.07.041715] [PMID: 18368211]
[48]
Miricescu, D.; Balan, D.; Tulin, A.; Stiru, O.; Vacaroiu, I.; Mihai, D.; Popa, C.; Enyedi, M.; Nedelea, A.; Nica, A.; Stefani, C. Impact of adipose tissue in chronic kidney disease development (Review). Exp. Ther. Med., 2021, 21(5), 539.
[http://dx.doi.org/10.3892/etm.2021.9969] [PMID: 33815612]
[49]
Fanelli, C.; Fernandes, B.H.V.; Machado, F.G.; Okabe, C.; Malheiros, D.M.A.C.; Fujihara, C.K.; Zatz, R. Effects of losartan, in monotherapy or in association with hydrochlorothiazide, in chronic nephropathy resulting from losartan treatment during lactation. Am. J. Physiol. Renal Physiol., 2011, 301(3), F580-F587.
[http://dx.doi.org/10.1152/ajprenal.00042.2011] [PMID: 21653629]
[50]
Rüster, C.; Wolf, G. Renin-angiotensin-aldosterone system and progression of renal disease. J. Am. Soc. Nephrol., 2006, 17(11), 2985-2991.
[http://dx.doi.org/10.1681/ASN.2006040356] [PMID: 17035613]
[51]
Zeisberg, M.; Neilson, E.G. Mechanisms of tubulointerstitial fibrosis. J. Am. Soc. Nephrol., 2010, 21(11), 1819-1834.
[http://dx.doi.org/10.1681/ASN.2010080793] [PMID: 20864689]
[52]
Machado, F.G.; Poppi, E.P.B.; Fanelli, C.; Malheiros, D.M.A.C.; Zatz, R.; Fujihara, C.K. AT 1 blockade during lactation as a model of chronic nephropathy: mechanisms of renal injury. Am. J. Physiol. Renal Physiol., 2008, 294(6), F1345-F1353.
[http://dx.doi.org/10.1152/ajprenal.00020.2008] [PMID: 18400868]
[53]
Wolf, G.; Wenzel, U.O. Angiotensin II and cell cycle regulation. Hypertension, 2004, 43(4), 693-698.
[http://dx.doi.org/10.1161/01.HYP.0000120963.09029.ca] [PMID: 14967829]
[54]
Graciano, M.L.; Cavaglieri, R.C.; Dellê, H.; Dominguez, W.V.; Casarini, D.E.; Malheiros, D.M.; Noronha, I.L. Intrarenal Renin-Angiotensin system is upregulated in experimental model of progressive renal disease induced by chronic inhibition of nitric oxide synthesis. J. Am. Soc. Nephrol., 2004, 15(7), 1805-1815.
[http://dx.doi.org/10.1097/01.ASN.0000131528.00773.A9] [PMID: 15213268]
[55]
Ni, W.; Yang, X.; Yang, D.; Bao, J.; Li, R.; Xiao, Y.; Hou, C.; Wang, H.; Liu, J.; Yang, D.; Xu, Y.; Cao, Z.; Gao, Z. Role of angiotensin-converting enzyme 2 (ACE2) in COVID-19. Crit. Care, 2020, 24(1), 422.
[http://dx.doi.org/10.1186/s13054-020-03120-0] [PMID: 32660650]
[56]
Vanholder, R.; Sever, M.S.; Erek, E.; Lameire, N. Rhabdomyolysis. J. Am. Soc. Nephrol., 2000, 11(8), 1553-1561.
[http://dx.doi.org/10.1681/ASN.V1181553] [PMID: 10906171]
[57]
Roncal Jimenez, C.A.; Ishimoto, T.; Lanaspa, M.A.; Rivard, C.J.; Nakagawa, T.; Ejaz, A.A.; Cicerchi, C.; Inaba, S.; Le, M.; Miyazaki, M.; Glaser, J.; Correa-Rotter, R.; González, M.A.; Aragón, A.; Wesseling, C.; Sánchez-Lozada, L.G.; Johnson, R.J. Fructokinase activity mediates dehydration-induced renal injury. Kidney Int., 2014, 86(2), 294-302.
[http://dx.doi.org/10.1038/ki.2013.492] [PMID: 24336030]
[58]
Roncal-Jimenez, C.; García-Trabanino, R.; Barregard, L.; Lanaspa, M.A.; Wesseling, C.; Harra, T.; Aragón, A.; Grases, F.; Jarquin, E.R.; González, M.A.; Weiss, I.; Glaser, J.; Sánchez-Lozada, L.G.; Johnson, R.J. Heat stress nephropathy from exercise-induced uric acid crystalluria: a perspective on mesoamerican nephropathy. Am. J. Kidney Dis., 2016, 67(1), 20-30.
[http://dx.doi.org/10.1053/j.ajkd.2015.08.021] [PMID: 26455995]
[59]
Correa-Rotter, R.; Wesseling, C.; Johnson, R.J. CKD of unknown origin in Central America: the case for a Mesoamerican nephropathy. Am. J. Kidney Dis., 2014, 63(3), 506-520.
[http://dx.doi.org/10.1053/j.ajkd.2013.10.062] [PMID: 24412050]
[60]
Bankir, L.; Bouby, N.; Ritz, E. Vasopressin: a novel target for the prevention and retardation of kidney disease? Nat. Rev. Nephrol., 2013, 9(4), 223-239.
[http://dx.doi.org/10.1038/nrneph.2013.22] [PMID: 23438973]
[61]
Clark, W.F.; Sontrop, J.M.; Huang, S.H.; Moist, L.; Bouby, N.; Bankir, L. Hydration and chronic kidney disease progression: a critical review of the evidence. Am. J. Nephrol., 2016, 43(4), 281-292.
[http://dx.doi.org/10.1159/000445959] [PMID: 27161565]
[62]
Yadav, N.; Sharma, S.; Sharma, S.; Sharma, K. Critical analysis of protective role of plants against gentamicin induced nephrotoxicity. Indian J. Enviro. Sci., 2017, 21(1), 1-34.
[63]
García-Trabanino, R.; Jarquín, E.; Wesseling, C.; Johnson, R.J.; González-Quiroz, M.; Weiss, I.; Glaser, J.; José Vindell, J.; Stockfelt, L.; Roncal, C.; Harra, T.; Barregard, L. Heat stress, dehydration, and kidney function in sugarcane cutters in El Salvador – A cross-shift study of workers at risk of Mesoamerican nephropathy. Environ. Res., 2015, 142, 746-755.
[http://dx.doi.org/10.1016/j.envres.2015.07.007] [PMID: 26209462]
[64]
Kupferman, J.; Amador, J.J.; Lynch, K.E.; Laws, R.L.; López-Pilarte, D.; Ramírez-Rubio, O.; Kaufman, J.S.; Lau, J.L.; Weiner, D.E.; Robles, N.V.; Verma, K.P.; Scammell, M.K.; McClean, M.D.; Brooks, D.R.; Friedman, D.J. Characterization of mesoamerican nephropathy in a kidney failure hotspot in Nicaragua. Am. J. Kidney Dis., 2016, 68(5), 716-725.
[http://dx.doi.org/10.1053/j.ajkd.2016.06.012] [PMID: 27575010]
[65]
Kang, D.H.; Nakagawa, T.; Feng, L.; Watanabe, S.; Han, L.; Mazzali, M.; Truong, L.; Harris, R.; Johnson, R.J. A role for uric acid in the progression of renal disease. J. Am. Soc. Nephrol., 2002, 13(12), 2888-2897.
[http://dx.doi.org/10.1097/01.ASN.0000034910.58454.FD] [PMID: 12444207]
[66]
Mattson, D.L. Heat stress nephropathy and hyperuricemia. Am. J. Physiol. Renal Physiol., 2018, 315(4), F757-F758.
[http://dx.doi.org/10.1152/ajprenal.00244.2018] [PMID: 29897286]
[67]
Alfarouk, K.O.; Ahmed, S.B.M.; Ahmed, A.; Elliott, R.L.; Ibrahim, M.E.; Ali, H.S.; Wales, C.C.; Nourwali, I.; Aljarbou, A.N.; Bashir, A.H.H.; Alhoufie, S.T.S.; Alqahtani, S.S.; Cardone, R.A.; Fais, S.; Harguindey, S.; Reshkin, S.J. The interplay of dysregulated pH and electrolyte imbalance in cancer. Cancers (Basel), 2020, 12(4), 898.
[http://dx.doi.org/10.3390/cancers12040898] [PMID: 32272658]
[68]
Balcı, A.K.; Koksal, O.; Kose, A.; Armagan, E.; Ozdemir, F.; Inal, T.; Oner, N. General characteristics of patients with electrolyte imbalance admitted to emergency department. World J. Emerg. Med., 2013, 4(2), 113-116.
[http://dx.doi.org/10.5847/wjem.j.issn.1920-8642.2013.02.005] [PMID: 25215103]
[69]
de Lorenzo, A.; Liaño, F. High temperatures and nephrology: The climate change problem. Nefrologia, 2017, 37(5), 492-500.
[http://dx.doi.org/10.1016/j.nefro.2016.12.008] [PMID: 28946962]
[70]
Sodi, R.; Davison, A.S.; Holmes, E.; Hine, T.J.; Roberts, N.B. The phenomenon of seasonal pseudohypokalemia: Effects of ambient temperature, plasma glucose and role for sodium–potassium-exchanging-ATPase. Clin. Biochem., 2009, 42(9), 813-818.
[http://dx.doi.org/10.1016/j.clinbiochem.2009.01.024] [PMID: 19232334]
[71]
Sinclair, D.; Briston, P.; Young, R.; Pepin, N. Seasonal pseudohyperkalaemia. J. Clin. Pathol., 2003, 56(5), 385-387.
[http://dx.doi.org/10.1136/jcp.56.5.385] [PMID: 12719461]
[72]
Upadhyay, A.; Jaber, B.L.; Madias, N.E. Incidence and prevalence of hyponatremia. Am. J. Med., 2006, 119(7)(Suppl. 1), S30-S35.
[http://dx.doi.org/10.1016/j.amjmed.2006.05.005] [PMID: 16843082]
[73]
Verbalis, J.G.; Goldsmith, S.R.; Greenberg, A.; Korzelius, C.; Schrier, R.W.; Sterns, R.H.; Thompson, C.J. Diagnosis, evaluation, and treatment of hyponatremia: expert panel recommendations. Am. J. Med., 2013, 126(10)(Suppl. 1), S1-S42.
[http://dx.doi.org/10.1016/j.amjmed.2013.07.006] [PMID: 24074529]
[74]
Winzeler, B.; Jeanloz, N.; Nigro, N.; Suter-Widmer, I.; Schuetz, P.; Arici, B.; Bally, M.; Blum, C.; Bock, A.; Huber, A.; Mueller, B.; Christ-Crain, M. Long-term outcome of profound hyponatremia: a prospective 12 months follow-up study. Eur. J. Endocrinol., 2016, 175(6), 499-507.
[http://dx.doi.org/10.1530/EJE-16-0500] [PMID: 27585594]
[75]
Musiał, K.; Zwolińska, D. Heat shock proteins in chronic kidney disease. Pediatr. Nephrol., 2011, 26(7), 1031-1037.
[http://dx.doi.org/10.1007/s00467-010-1709-5] [PMID: 21193931]
[76]
Joly, A.L.; Wettstein, G.; Mignot, G.; Ghiringhelli, F.; Garrido, C. Dual role of heat shock proteins as regulators of apoptosis and innate immunity. J. Innate Immun., 2010, 2(3), 238-247.
[http://dx.doi.org/10.1159/000296508] [PMID: 20375559]
[77]
Yan, Y.E.; Zhao, Y.Q.; Wang, H.; Fan, M. Pathophysiological factors underlying heatstroke. Med. Hypotheses, 2006, 67(3), 609-617.
[http://dx.doi.org/10.1016/j.mehy.2005.12.048] [PMID: 16631316]
[78]
Sucholeiki, R. Heatstroke. Semin. Neurol., 2005, 25(3), 307-314.
[http://dx.doi.org/10.1055/s-2005-917667] [PMID: 16170743]
[79]
Ahlgrim, C.; Pottgiesser, T.; Robinson, N.; Sottas, P.E.; Ruecker, G.; Schumacher, Y.O. original Article: Are 10 min of seating enough to guarantee stable haemoglobin and haematocrit readings for the athlete’s biological passport? Int. J. Lab. Hematol., 2010, 32(5), 506-511.
[http://dx.doi.org/10.1111/j.1751-553X.2009.01213.x] [PMID: 20148988]
[80]
Hut, H.M.J.; Kampinga, H.H.; Sibon, O.C.M. Hsp70 protects mitotic cells against heat-induced centrosome damage and division abnormalities. Mol. Biol. Cell, 2005, 16(8), 3776-3785.
[http://dx.doi.org/10.1091/mbc.e05-01-0038] [PMID: 15930131]
[81]
Landry, J.; Bernier, D.; Chrétien, P.; Nicole, L.M.; Tanguay, R.M.; Marceau, N. Synthesis and degradation of heat shock proteins during development and decay of thermotolerance. Cancer Res., 1982, 42(6), 2457-2461.
[PMID: 7074623]
[82]
Li, G.C.; Werb, Z. Correlation between synthesis of heat shock proteins and development of thermotolerance in Chinese hamster fibroblasts. Proc. Natl. Acad. Sci., 1982, 79(10), 3218-3222.
[http://dx.doi.org/10.1073/pnas.79.10.3218] [PMID: 6954473]
[83]
Li, G.C.; Li, L.; Liu, R.Y.; Rehman, M.; Lee, W.M. Heat shock protein hsp70 protects cells from thermal stress even after deletion of its ATP-binding domain. Proc. Natl. Acad. Sci., 1992, 89(6), 2036-2040.
[http://dx.doi.org/10.1073/pnas.89.6.2036] [PMID: 1549562]
[84]
Pelham, H.R. Hsp70 accelerates the recovery of nucleolar morphology after heat shock. EMBO J., 1984, 3(13), 3095-3100.
[http://dx.doi.org/10.1002/j.1460-2075.1984.tb02264.x] [PMID: 6441707]
[85]
Bhagat, L.; Singh, V.P.; Dawra, R.K.; Saluja, A.K. Sodium arsenite induces heat shock protein 70 expression and protects against secretagogue-induced trypsinogen and NF-κB activation. J. Cell. Physiol., 2008, 215(1), 37-46.
[http://dx.doi.org/10.1002/jcp.21286] [PMID: 17941083]
[86]
Barnes, J.A.; Collins, B.W.; Dix, D.J.; Allen, J.W. Effects of heat shock protein 70 (Hsp70) on arsenite-induced genotoxicity. Environ. Mol. Mutagen., 2002, 40(4), 236-242.
[http://dx.doi.org/10.1002/em.10116] [PMID: 12489113]
[87]
Jin, X.; Wang, R.; Xiao, C.; Cheng, L.; Wang, F.; Yang, L.; Feng, T.; Chen, M.; Chen, S.; Fu, X.; Deng, J.; Wang, R.; Tang, F.; Wei, Q.; Tanguay, R.M.; Wu, T. Serum and lymphocyte levels of heat shock protein 70 in aging: a study in the normal Chinese population. Cell Stress Chaperones, 2004, 9(1), 69-75.
[http://dx.doi.org/10.1379/1466-1268(2004)009<0069:SALLOH>2.0.CO;2] [PMID: 15270079]
[88]
Jin, X.; Xiao, C.; Tanguay, R.M.; Yang, L.; Wang, F.; Chen, M.; Fu, X.; Wang, R.; Deng, J.; Deng, Z.; Zheng, Y.; Wei, Q.; Wu, T. Correlation of lymphocyte heat shock protein 70 levels with neurologic deficits in elderly patients with cerebral infarction. Am. J. Med., 2004, 117(6), 406-411.
[http://dx.doi.org/10.1016/j.amjmed.2004.03.026] [PMID: 15380497]
[89]
Multhoff, G. Heat shock protein 70 (Hsp70): Membrane location, export and immunological relevance. Methods, 2007, 43(3), 229-237.
[http://dx.doi.org/10.1016/j.ymeth.2007.06.006] [PMID: 17920520]
[90]
Jacklitsch, B.; Williams, W.; Musolin, K.; Coca, A.; Kim, J.; Turner, N. Occupational exposure to heat and hot environments – revised criteria 2016. Department of Health and Human Services, Public Health Service, Centers for Disease Control and Prevention, National Institute for Occupational Safety and Health, DHHS; NIOSH: Cincinnati, OH, U.S., 2016, pp. 1-159.
[91]
Cheungpasitporn, W.; Rossetti, S.; Friend, K.; Erickson, S.B.; Lieske, J.C. Treatment effect, adherence, and safety of high fluid intake for the prevention of incident and recurrent kidney stones: a systematic review and meta-analysis. J. Nephrol., 2016, 29(2), 211-219.
[http://dx.doi.org/10.1007/s40620-015-0210-4] [PMID: 26022722]
[92]
Xu, C.; Zhang, C.; Wang, X.L.; Liu, T.Z.; Zeng, X.T.; Li, S.; Duan, X.W. Self-fluid management in prevention of kidney stones: a PRISMA-compliant systematic review and dose-response meta-analysis of observational studies. Medicine (Baltimore), 2015, 94(27), e1042.
[http://dx.doi.org/10.1097/MD.0000000000001042] [PMID: 26166074]
[93]
Ó Flatharta, T.; Flynn, A.; Mulkerrin, E.C. Heat-related chronic kidney disease mortality in the young and old: differing mechanisms, potentially similar solutions? BMJ Evid. Based Med., 2019, 24(2), 45-47.
[http://dx.doi.org/10.1136/bmjebm-2018-110971] [PMID: 30262459]
[94]
Goldstein, K.; Briggs, M.; Oleynik, V.; Cullen, M.; Jones, J.; Newman, E.; Narva, A. Using digital media to promote kidney disease education. Adv. Chronic Kidney Dis., 2013, 20(4), 364-369.
[http://dx.doi.org/10.1053/j.ackd.2013.04.001] [PMID: 23809289]
[95]
Colbert, G.B.; Topf, J.; Jhaveri, K.D.; Oates, T.; Rheault, M.N.; Shah, S.; Hiremath, S.; Sparks, M.A. The social media revolution in nephrology education. Kidney Int. Rep., 2018, 3(3), 519-529.
[http://dx.doi.org/10.1016/j.ekir.2018.02.003] [PMID: 29854960]
[96]
Kjellstrom, T.; Crowe, J. Climate change, workplace heat exposure, and occupational health and productivity in Central America. Int. J. Occup. Environ. Health, 2011, 17(3), 270-281.
[http://dx.doi.org/10.1179/oeh.2011.17.3.270] [PMID: 21905396]
[97]
Venugopal, V.; Rekha, S.; Manikandan, K.; Latha, P.K.; Vennila, V.; Ganesan, N.; Kumaravel, P.; Chinnadurai, S.J. Heat stress and inadequate sanitary facilities at workplaces – an occupational health concern for women? Glob. Health Action, 2016, 9(1), 31945.
[http://dx.doi.org/10.3402/gha.v9.31945] [PMID: 27633034]
[98]
Jacklitsch, B.L. Assessing heat-related knowledge, perceptions and need among emergency oil spill cleanup responders., Ph.D. dissertation. University of Cincinnati, 2017.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy