Skip to main content

Open Access 08.02.2024

Effects of Interobserver Segmentation Variability and Intensity Discretization on MRI-Based Radiomic Feature Reproducibility of Lipoma and Atypical Lipomatous Tumor

verfasst von: Salvatore Gitto, Renato Cuocolo, Vincenzo Giannetta, Julietta Badalyan, Filippo Di Luca, Stefano Fusco, Giulia Zantonelli, Domenico Albano, Carmelo Messina, Luca Maria Sconfienza

Erschienen in: Journal of Imaging Informatics in Medicine

Abstract

Segmentation and image intensity discretization impact on radiomics workflow. The aim of this study is to investigate the influence of interobserver segmentation variability and intensity discretization methods on the reproducibility of MRI-based radiomic features in lipoma and atypical lipomatous tumor (ALT). Thirty patients with lipoma or ALT were retrospectively included. Three readers independently performed manual contour-focused segmentation on T1-weighted and T2-weighted sequences, including the whole tumor volume. Additionally, a marginal erosion was applied to segmentations to evaluate its influence on feature reproducibility. After image pre-processing, with included intensity discretization employing both fixed bin number and width approaches, 1106 radiomic features were extracted from each sequence. Intraclass correlation coefficient (ICC) 95% confidence interval lower bound ≥ 0.75 defined feature stability. In contour-focused vs. margin shrinkage segmentation, the rates of stable features extracted from T1-weighted and T2-weighted images ranged from 92.68 to 95.21% vs. 90.69 to 95.66% after fixed bin number discretization and from 95.75 to 97.65% vs. 95.39 to 96.47% after fixed bin width discretization, respectively, with no difference between the two segmentation approaches (p ≥ 0.175). Higher stable feature rates and higher feature ICC values were found when implementing discretization with fixed bin width compared to fixed bin number, regardless of the segmentation approach (p < 0.001). In conclusion, MRI radiomic features of lipoma and ALT are reproducible regardless of the segmentation approach and intensity discretization method, although a certain degree of interobserver variability highlights the need for a preliminary reliability analysis in future studies.
Hinweise

Supplementary Information

The online version contains supplementary material available at https://​doi.​org/​10.​1007/​s10278-024-00999-x.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Abkürzungen
ALT
Atypical lipomatous tumor
CI
Confidence interval
GLCM
Gray-level cooccurrence matrix
GLDM
Gray-level dependence matrix
GLRLM
Gray-level run length matrix
GLSZM
Gray-level size zone matrix
ICC
Intraclass correlation coefficient
LoG
Laplacian of Gaussian
MRI
Magnetic resonance imaging
NGTDM
Neighboring gray tone difference matrix
ROI
Region of interest

Introduction

Atypical lipomatous tumor (ALT) and lipoma are the most common soft-tissue lesions [1]. According to the 2020 edition of the World Health Organization classification [2], the term ALT is reserved for low-grade adipocytic neoplasms arising at anatomical sites for which surgery is generally curative, including the extremities and trunk [2]. ALTs have a relatively indolent disease course compared to well-differentiated liposarcomas, namely lipomatous lesions with the same histology but located in deep anatomical sites such as the retroperitoneum, mediastinum, and spermatic cord, where there is a higher risk for recurrence and dedifferentiation related to lower chances of achieving negative surgical margins [2]. In line with this relatively indolent clinical behavior, treatment strategy has progressively shifted from extensive surgery to marginal excision in ALTs, which is now considered an appropriate option to achieve local control while taking into account the morbidity rates associated with surgery [3]. On the other hand, lipomas are benign lipomatous lesions, which do not require any treatment unless symptomatic or due to cosmetic concerns [3]. Lipomas are rare in deep locations, such as the retroperitoneum, but very common in the extremities and trunk [1]. Thus, an accurate distinction between ALT and lipoma is desirable to offer optimal patient care.
In the diagnostic pathway of lipomatous soft-tissue lesions, magnetic resonance imaging (MRI) is the imaging method of choice for diagnosis and differentiating ALT from lipoma, with high sensitivity and substantial specificity [46]. In detail, according to a recent meta-analysis, the sensitivity and specificity of radiologists evaluating multiple combined imaging parameters (called “radiologist gestalt”) range from 76 to 100% and 37 to 77%, respectively, if only studies focusing on lipoma and ALT are considered [4]. Nonetheless, a certain degree of interobserver variability has emerged even among expert readers [57], with kappa values ranging from 0.23 to 0.7 according to this meta-analysis [4]. Preliminary imaging studies applying radiomics have shown promise for improving diagnostic accuracy and characterizing lipomatous soft-tissue lesions more objectively [8]. Radiomics includes the extraction and analysis of quantitative parameters from medical images, known as radiomic features [911]. A crucial step of radiomic workflows is feature reproducibility assessment, as these quantitative parameters may suffer from interobserver variability, particularly regarding tumor delineation while performing manual segmentation [1215]. Segmentation margins are also critical because the peritumoral area may influence the reproducibility of radiomic features and their diagnostic performance [15, 16]. Furthermore, in radiomic workflows, the effects of different image intensity discretization methods on feature reproducibility are debated [1719]. In literature, the intraclass correlation coefficient (ICC) is commonly employed to evaluate radiomic feature reproducibility [16, 2023].
The aim of this study is to investigate the influence of interobserver manual segmentation variability on the reproducibility of MRI-based radiomic features in lipoma and ALT, also considering the impact of different image intensity discretization methods.

Materials and Methods

Design and Population

Institutional Review Board approved this retrospective study and waived the need for informed consent. This study was designed to meet the numerical requirements of a reproducibility analysis in terms of patients and readers involved, namely 30 lesions and 3 different readers, according to the ICC guidelines by Koo and Li [24]. An electronic search of the pathology information system was performed, and 30 patients with lipomatous soft-tissue tumors were included (median age 58 [range 40–79] years). Inclusion criteria were as follows: (i) lipoma or ALT proven by post-surgical pathology, which was based on microscopic findings and MDM2 immunohistochemistry or fluorescence in situ hybridization; (ii) 1.5-T MRI performed within 3 months before surgery, including turbo spin echo T1-weighted and T2-weighted sequences without fat suppression. Exclusion criteria were ALT local recurrence and poor image quality or image artifacts affecting segmentation and radiomic analysis.
Details regarding location, size, and main imaging characteristics of the included lipomas and ALTs are provided in Table 1. All examinations were performed on one of two 1.5-T MRI systems (Magnetom Avanto or Magnetom Espree, Siemens Healthineers, Erlangen, Germany). Axial T1-weighted and T2-weighted MRI sequences were extracted for image analysis. The median matrix size and slice thickness were 512 × 512 (range 320–512 × 216–512) and 3.5 (range 3–5) mm, respectively. The median TE and TR were 11 (range 10–21) and 663 (range 454–800) ms on T1-weighted sequences, respectively. The median TE and TR were 100 (range 80–146) and 3664 (range 2000–7444) ms on T2-weighted sequences, respectively. All extracted DICOM images were converted to the NiFTI format prior to the analysis.
Table 1
Location, size and main imaging characteristics of the ALTs and lipomas included in this study
 
ALT
Lipoma
Anatomical site
Arm, n = 2
Forearm or hand, n = 4
Leg, n = 1
Thigh, n = 9
Arm, n = 4
Forearm or hand, n = 5
Leg, n = 1
Thigh, n = 4
Location relative to fascia
All deep to the deep peripheral fascia surrounding muscles
All deep to the deep peripheral fascia surrounding muscles
Maximum diameter
145 (43–292) mm
83 (32–155) mm
Thick septations (> 2 mm)
Yes, n = 10
No, n = 6
Yes, n = 6
No, n = 8
Non-fatty nodular/irregular components
Yes, n = 1
No, n = 15
Yes, n = 0
No, n = 14
Maximum diameter is expressed as median (range)

Image Segmentation

A musculoskeletal radiologist with 4 years of experience in musculoskeletal tumor imaging (S.G.), a general radiologist (V.G.), and a medical resident (J.B.) independently performed manual image segmentation using the open-source software ITK-SNAP (v3.8) [25]. The readers knew the study would deal with lipomatous soft-tissue tumors, but they were blinded to any additional information regarding pathology or disease course. Manual contour-focused segmentation was performed by drawing a region of interest (ROI) slice by slice to include the whole tumor volume on both axial T1-weighted and T2-weighted MRI sequences. Thereafter, margin shrinkage segmentation was computed by applying a marginal erosion to evaluate the influence of segmentation margins on feature reproducibility (Fig. 1). In detail, ROI shrinkage was performed using the fslmaths erosion function of the FMRIB Software Library [26]. The default kernels, namely a 3 × 3 × 3 box centered at the target voxel, were employed.

Radiomic Analysis

Image pre-processing and feature extraction were performed using PyRadiomics (v3.0.1) [27], an open-source Python software. Image pre-processing consisted of resampling to a 2 × 2 × 2 isotropic voxel, intensity normalization (mean value of 300 and standard deviation of 100) and discretization with both options of fixed bin number and fixed bin width, as implemented in PyRadiomics. In detail, discretization was obtained using both a fixed bin number of 64 and a fixed bin width of 7.
Original images were used for extraction of first-order, shape-based and texture features, which were grouped according to PyRadiomics official documentation (https://​pyradiomics.​readthedocs.​io/​en/​latest/​features.​html) and included: 18 first-order features, 14 shape-based features, 22 Gy-level cooccurrence matrix (GLCM) features, 16 Gy-level size zone matrix (GLSZM) features, 16 Gy-level run length matrix (GLRLM) features, 14 Gy-level dependence matrix (GLDM) features, and 5 neighboring gray tone difference matrix (NGTDM).
In addition to the original images, Laplacian of Gaussian (LoG)–filtered (sigma = 2, 4, 6) and wavelet-transformed images (all possible low and high pass filter combinations) were obtained for extraction of first-order and texture features. Shape-based features are independent from gray-level value distribution and therefore were only computed on the original images. A total of 1106 features were extracted from original, LoG-filtered, and wavelet-transformed images for each MRI sequence.

Statistical Analysis

Interobserver reliability was assessed using two-way, random-effects, single-rater agreement ICC 95% confidence interval (CI) lower bound. Features were considered stable when achieving good (0.75 ≤ ICC 95% CI lower bound < 0.9) to excellent (ICC 95% CI lower bound ≥ 0.9) interobserver reliability [24]. Differences among stable feature rates were evaluated using chi-square test. Differences among ICC 95% CI lower bound values were evaluated using Friedman test for repeated samples and Wilcoxon signed rank test with continuity correction for pairwise comparisons. A two-sided p-value < 0.05 indicated statistical significance [28]. Data analysis was performed using the pandas and numpy Python software and the “irr” R package [29, 30].

Results

Stable Feature Rates by Intensity Discretization Method and Segmentation Approach

After implementing image intensity discretization with fixed bin number, in contour-focused vs. margin shrinkage segmentation, the stable feature rates were 95.21% (n = 1053) vs. 95.66% (n = 1058) and 92.68% (n = 1025) vs. 90.69% (n = 1003) for T1-weighted and T2-weighted images, respectively, with no statistical difference (p = 0.298). In Fig. 2, box and whisker plots show the interobserver reproducibility of feature classes derived from contour-focused and margin shrinkage segmentations, grouped according to image type and MRI sequence. The matching stable features derived from contour-focused and margin shrinkage segmentations performed on T1-weighted and T2-weighted images were 92.68% (n = 1025) and 86.80% (n = 960), respectively, as detailed in Supplementary Files 1–2.
After implementing image intensity discretization with fixed bin width, in contour-focused vs. margin shrinkage segmentation, the stable feature rates were 97.65% (n = 1080) vs. 95.39% (n = 1055) and 95.75% (n = 1059) vs. 96.47% (n = 1067) for T1-weighted and T2-weighted images, respectively, with no statistical difference (p = 0.175). In Fig. 3, box and whisker plots show the interobserver reproducibility of feature classes derived from contour-focused and margin shrinkage segmentations, grouped according to image type and MRI sequence. The matching stable features derived from contour-focused and margin shrinkage segmentations performed on T1- and T2-weighted images were 94.30% (n = 1043) and 93.76% (n = 1037), respectively, as detailed in Supplementary Files 3–4.
In image intensity discretization with fixed bin number vs. fixed bin width, the latter discretization method yielded higher rates of stable features regardless of the segmentation approach (p < 0.001). Tables 2, 3, 4 and 5 show the number and percentage of stable features that were obtained with different combinations of discretization methods and segmentation approaches, grouped according to feature class and image type.
Table 2
Discretization with fixed bin number and contour-focused segmentation. Number and percentage of stable features with good (0.75 ≤ ICC 95% CI lower bound < 0.9) and excellent (ICC 95% CI lower bound ≥ 0.9) interobserver reproducibility grouped according to feature class and image type
Image
Feature class
Image type
Total feature number (n)
ICC ≥ 0.75 (n)
ICC ≥ 0.90 (n)
ICC ≥ 0.75 (%)
ICC ≥ 0.90 (%)
T1w
First order
LoG
54
54
50
100
92.59
Original
18
17
17
94.44
94.44
Wavelet
144
138
130
95.83
90.28
Shape
Original
14
13
13
92.86
92.86
GLCM
LoG
66
63
51
95.45
77.27
Original
22
22
20
100
90.91
Wavelet
176
166
157
94.32
89.2
GLDM
LoG
42
40
36
95.24
85.71
Original
14
14
13
100
92.86
Wavelet
112
107
98
95.54
87.5
GLRLM
LoG
48
45
34
93.75
70.83
Original
16
16
15
100
93.75
Wavelet
128
120
104
93.75
81.25
GLSZM
LoG
48
43
26
89.58
54.17
Original
16
15
7
93.75
43.75
Wavelet
128
120
77
93.75
60.16
NGTDM
LoG
15
15
14
100
93.33
Original
5
5
5
100
100
Wavelet
40
40
39
100
97.5
 
Overall
1106
1053
906
95.21
81.92
T2w
First order
LoG
54
52
49
96.3
90.74
Original
18
17
15
94.44
83.33
Wavelet
144
134
123
93.06
85.42
Shape
Original
14
13
8
92.86
57.14
GLCM
LoG
66
63
56
95.45
84.85
Original
22
21
18
95.45
81.82
Wavelet
176
162
143
92.05
81.25
GLDM
LoG
42
40
36
95.24
85.71
Original
14
13
10
92.86
71.43
Wavelet
112
106
84
94.64
75
GLRLM
LoG
48
45
36
93.75
75
Original
16
15
10
93.75
62.5
Wavelet
128
114
87
89.06
67.97
GLSZM
LoG
48
47
29
97.92
60.42
Original
16
15
4
93.75
25
Wavelet
128
108
67
84.38
52.34
NGTDM
LoG
15
15
14
100
93.33
Original
5
5
4
100
80
Wavelet
40
40
38
100
95
 
Overall
1106
1025
831
92.68
75.14
GLCM gray-level cooccurrence matrix, GLDM gray-level dependence matrix, GLRLM gray-level run length matrix, GLSZM gray-level size zone matrix, ICC intraclass correlation coefficient, LoG Laplacian of Gaussian, NGTDM neighboring gray tone difference matrix
Table 3
Discretization with fixed bin number and margin shrinkage segmentation. Number and percentage of stable features with good (0.75 ≤ ICC 95% CI lower bound < 0.9) and excellent (ICC 95% CI lower bound ≥ 0.9) interobserver reproducibility grouped according to feature class and image type
Image
Feature class
Image type
Total feature number (n)
ICC ≥ 0.75 (n)
ICC ≥ 0.90 (n)
ICC ≥ 0.75 (%)
ICC ≥ 0.90 (%)
T1w
First order
LoG
54
54
53
100
98.15
Original
18
18
17
100
94.44
Wavelet
144
143
132
99.31
91.67
Shape
Original
14
14
11
100
78.57
GLCM
LoG
66
63
52
95.45
78.79
Original
22
22
18
100
81.82
Wavelet
176
166
143
94.32
81.25
GLDM
LoG
42
40
37
95.24
88.1
Original
14
14
11
100
78.57
Wavelet
112
108
96
96.43
85.71
GLRLM
LoG
48
44
34
91.67
70.83
Original
16
16
13
100
81.25
Wavelet
128
121
104
94.53
81.25
GLSZM
LoG
48
43
28
89.58
58.33
Original
16
16
9
100
56.25
Wavelet
128
116
75
90.63
58.59
NGTDM
LoG
15
15
15
100
100
Original
5
5
5
100
100
Wavelet
40
40
37
100
92.5
 
Overall
1106
1058
890
95.66
80.47
T2w
First order
LoG
54
53
48
98.15
88.89
Original
18
16
14
88.89
77.78
Wavelet
144
142
123
98.61
85.42
Shape
Original
14
13
7
92.86
50
GLCM
LoG
66
62
49
93.94
74.24
Original
22
20
14
90.91
63.64
Wavelet
176
157
139
89.2
78.98
GLDM
LoG
42
39
37
92.86
88.1
Original
14
12
10
85.71
71.43
Wavelet
112
99
88
88.39
78.57
GLRLM
LoG
48
41
32
85.42
66.67
Original
16
12
9
75
56.25
Wavelet
128
110
98
85.94
76.56
GLSZM
LoG
48
41
31
85.42
64.58
Original
16
14
8
87.5
50
Wavelet
128
112
82
87.5
64.06
NGTDM
LoG
15
15
14
100
93.33
Original
5
5
5
100
100
Wavelet
40
40
37
100
92.5
 
Overall
1106
1003
845
90.69
76.4
GLCM gray-level cooccurrence matrix, GLDM gray-level dependence matrix, GLRLM gray-level run length matrix, GLSZM, gray-level size zone matrix, ICC intraclass correlation coefficient, LoG Laplacian of Gaussian, NGTDM neighboring gray tone difference matrix
Table 4
Discretization with fixed bin width and contour-focused segmentation. Number and percentage of stable features with good (0.75 ≤ ICC 95% CI lower bound < 0.9) and excellent (ICC 95% CI lower bound ≥ 0.9) interobserver reproducibility grouped according to feature class and image type
Image
Feature class
Image type
Total feature number (n)
ICC ≥ 0.75 (n)
ICC ≥ 0.90 (n)
ICC ≥ 0.75 (%)
ICC ≥ 0.90 (%)
T1w
First order
LoG
54
54
50
100
92.59
Original
18
17
17
94.44
94.44
Wavelet
144
138
130
95.83
90.28
Shape
Original
14
13
13
92.86
92.86
GLCM
LoG
66
66
63
100
95.45
Original
22
22
19
100
86.36
Wavelet
176
176
169
100
96.02
GLDM
LoG
42
41
38
97.62
90.48
Original
14
14
12
100
85.71
Wavelet
112
112
106
100
94.64
GLRLM
LoG
48
47
43
97.92
89.58
Original
16
16
14
100
87.5
Wavelet
128
128
121
100
94.53
GLSZM
LoG
48
39
32
81.25
66.67
Original
16
13
8
81.25
50
Wavelet
128
124
93
96.88
72.66
NGTDM
LoG
15
15
12
100
80
Original
5
5
5
100
100
Wavelet
40
40
40
100
100
 
Overall
1106
1080
985
97.65
89.06
T2w
First order
LoG
54
52
49
96.3
90.74
Original
18
17
15
94.44
83.33
Wavelet
144
134
123
93.06
85.42
Shape
Original
14
13
8
92.86
57.14
GLCM
LoG
66
66
64
100
96.97
Original
22
22
17
100
77.27
Wavelet
176
174
164
98.86
93.18
GLDM
LoG
42
42
38
100
90.48
Original
14
14
12
100
85.71
Wavelet
112
106
92
94.64
82.14
GLRLM
LoG
48
47
43
97.92
89.58
Original
16
16
12
100
75
Wavelet
128
123
113
96.09
88.28
GLSZM
LoG
48
44
31
91.67
64.58
Original
16
15
6
93.75
37.5
Wavelet
128
115
94
89.84
73.44
NGTDM
LoG
15
15
12
100
80
Original
5
5
4
100
80
Wavelet
40
39
38
97.5
95
 
Overall
1106
1059
935
95.75
84.54
GLCM gray-level cooccurrence matrix, GLDM gray-level dependence matrix, GLRLM gray-level run length matrix, GLSZM gray-level size zone matrix, ICC intraclass correlation coefficient, LoG Laplacian of Gaussian, NGTDM neighboring gray tone difference matrix
Table 5
Discretization with fixed bin width and margin shrinkage segmentation. Number and percentage of stable features with good (0.75 ≤ ICC 95% CI lower bound < 0.9) and excellent (ICC 95% CI lower bound ≥ 0.9) interobserver reproducibility grouped according to feature class and image type
Image
Feature class
Image type
Total feature number (n)
ICC ≥ 0.75 (n)
ICC ≥ 0.90 (n)
ICC ≥ 0.75 (%)
ICC ≥ 0.90 (%)
T1w
First order
LoG
54
54
53
100
98.15
Original
18
18
18
100
100
Wavelet
144
143
132
99.31
91.67
Shape
Original
14
14
11
100
78.57
GLCM
LoG
66
66
63
100
95.45
Original
22
22
21
100
95.45
Wavelet
176
171
165
97.16
93.75
GLDM
LoG
42
40
36
95.24
85.71
Original
14
14
14
100
100
Wavelet
112
107
104
95.54
92.86
GLRLM
LoG
48
46
41
95.83
85.42
Original
16
16
16
100
100
Wavelet
128
121
119
94.53
92.97
GLSZM
LoG
48
38
30
79.17
62.5
Original
16
16
12
100
75
Wavelet
128
110
93
85.94
72.66
NGTDM
LoG
15
15
13
100
86.67
Original
5
5
4
100
80
Wavelet
40
39
35
97.5
87.5
 
Overall
1106
1055
980
95.39
88.61
T2w
First order
LoG
54
53
51
98.15
94.44
Original
18
16
16
88.89
88.89
Wavelet
144
142
125
98.61
86.81
Shape
Original
14
13
7
92.86
50
GLCM
LoG
66
66
62
100
93.94
Original
22
22
21
100
95.45
Wavelet
176
173
165
98.3
93.75
GLDM
LoG
42
42
39
100
92.86
Original
14
13
10
92.86
71.43
Wavelet
112
108
93
96.43
83.04
GLRLM
LoG
48
48
43
100
89.58
Original
16
15
13
93.75
81.25
Wavelet
128
126
111
98.44
86.72
GLSZM
LoG
48
45
33
93.75
68.75
Original
16
14
7
87.5
43.75
Wavelet
128
113
97
88.28
75.78
NGTDM
LoG
15
14
14
93.33
93.33
Original
5
4
4
80
80
Wavelet
40
40
38
100
95
 
Overall
1106
1067
949
96.47
85.8
GLCM gray-level cooccurrence matrix, GLDM gray-level dependence matrix, GLRLM gray-level run length matrix, GLSZM gray-level size zone matrix, ICC intraclass correlation coefficient, LoG Laplacian of Gaussian, NGTDM neighboring gray tone difference matrix

Feature ICC Values by Intensity Discretization Method and Segmentation Approach

The median and interquartile (first to third) range ICC 95% CI lower bound values of radiomic feature extracted from both T1-weighted and T2-weighted sequences are reported in Table 6, grouped according to image intensity discretization method and segmentation approach. A significant difference among ICC values was found using Friedman test for repeated samples on both T1-weighted and T2-weighted sequences (p < 0.001). In pairwise comparisons, higher feature ICC 95% CI lower bound values were found when performing image intensity discretization with fixed bin width compared to fixed bin number, regardless of the segmentation approach, on both T1-weighted and T2-weighted images (p < 0.001). On T1-weighted images, no difference in terms of ICC 95% CI lower bound was found between contour-focused and margin shrinkage segmentations after both discretization methods with fixed bin number (p = 0.8) and width (p = 0.62). On T2-weighted images, no difference in terms of ICC 95% CI lower bound was found between the two segmentation approaches after discretization with fixed bin number (p = 0.24). On T2-weighted images, higher ICC 95% CI lower bound values were found when performing margin shrinkage segmentation after intensity discretization with fixed bin width, compared to contour-focused segmentation (p < 0.001). In Fig. 4, box and whisker plots show the interobserver reproducibility of all features extracted from each MRI sequence using different discretization methods and segmentation approaches.
Table 6
ICC values by discretization method and segmentation approach. Median and interquartile (first to third) range ICC 95% CI lower bound values of radiomic features extracted from both T1-weighted and T2-weighted sequences, grouped according to discretization method and segmentation approach
Image
Discretization method
Segmentation approach
ICC 95% CI lower bound
Median
Interquartile range (first to third)
T1w
Fixed bin number
Contour focused
0.971
0.932–0.986
Margin shrinkage
0.974
0.929–0.986
Fixed bin width
Contour focused
0.982
0.957–0.992
Margin shrinkage
0.983
0.957–0.992
T2w
Fixed bin number
Contour focused
0.954
0.900–0.978
Margin shrinkage
0.955
0.907–0.983
Fixed bin width
Contour focused
0.969
0.936–0.989
Margin shrinkage
0.977
0.939–0.991

Discussion

The main finding of our study is that the rates of stable radiomic features extracted from T1-weighted and T2-weighted MRI sequences were very high (90% or higher) regardless of the discretization method and segmentation approach. The discretization method with fixed bin width yielded higher stable feature rates and higher feature ICC values compared to fixed bin number, regardless of the segmentation approach with or without marginal erosion (p < 0.001). Additionally, no difference in stable feature rates was found between the segmentation approaches, regardless of the discretization method (p ≥ 0.175). Overall, a small but still not negligible degree of segmentation variability highlighted the need to include a reliability analysis in radiomic studies.
Radiomics has a great potential as a non-invasive biomarker to quantify several tumor characteristics, both standalone and combined with artificial intelligence methods such as machine learning [3133]. However, it faces challenges to clinical implementation [34]. A great variability in radiomic features has emerged as a major issue across studies, and image segmentation is the most critical step [11]. As segmentation is time-consuming if performed manually, prior to conducting radiomic studies, methodological analyses would be desirable to preliminarily evaluate the robustness of different segmentation approaches and avoid biases due to non-reproducible, noisy features. Similar analyses were previously performed in kidney [16], lung and head and neck [14], and cartilaginous bone [15] lesions. Regarding lipomatous soft-tissue tumors, most radiomic studies included a feature reproducibility assessment as a dimensionality-reduction method in their radiomic workflow, which was built with the aim of differentiating benign from malignant (including low-grade) lesions [3542]. More recently, Sudjai et al. compared the effects of intra- and interobserver segmentation variability on the reproducibility of 2D and 3D MRI-based radiomic feature reproducibility in lipoma and ALT [43]. A region growing-based semiautomatic contour-focused segmentation was performed on T1-weighted sequences by two readers and only original images were used for feature extraction, resulting in 43 out of 93 (46.2%) 2D features and 76 out of 107 (71%) 3D features with an absolute agreement ICC ≥ 0.75, which defined feature stability [43]. Based on their findings, we focused our study on 3D segmentations only, as they yielded higher stable feature rates. We compared two image intensity discretization methods (fixed bin number vs. fixed bin width) and two segmentation approaches (contour-focused vs. margin shrinkage) on both T1-weighted and T2-weighted sequences, involving three different readers as suggested by the ICC guidelines by Koo and Li [24]. After extraction of features from original, filtered and transformed images (1106 features per sequence compared to 107 in the previous study [43]), we found higher rates of stable features (90% or higher per sequence, regardless of the discretization method and segmentation approach) using ICC 95% CI lower bound ≥ 0.75 as a stricter cutoff to define feature stability. This difference could be attributed to the use of filtered and transformed (in addition to the original) images for feature extraction in our study, as well as to the different experiences of the readers involved in image segmentation, namely a statistician and a research scientist in the previous study [43] and three physicians in our study. Despite these differences, a common conclusion that can be drawn from the previous [43] and our studies is that most 3D MRI radiomic features of lipoma and ALT have good reproducibility, although a certain degree of segmentation variability exists.
In our study, T1-weighted and T2-weighted MRI sequences demonstrated good reproducibility regardless of the image intensity discretization method employed in image pre-processing, which was performed using both options of fixed bin number and fixed bin width, with stable feature rates respectively ranging from 90.69 to 95.66% and from 95.39 to 97.65%. The discretization method with fixed bin width resulted in higher stable feature rates and higher feature ICC values, thus providing more robust features compared to discretization with fixed bin number in our series. This finding is in line with previous positron emission tomography and MRI studies showing better feature reproducibility when implementing fixed bin width [44, 45]. Margin shrinkage led to an improvement in terms of feature ICC values compared to contour-focused segmentation only when implementing discretization with fixed bin width on T2-weighted images. Conversely, no difference in terms of feature ICC values was found between the two segmentation approaches when implementing discretization with fixed bin width on T1-weighted images or fixed bin number regardless of the employed MRI sequence. Additionally, no difference in terms of stable feature rates was found between the two segmentation approaches, regardless of the discretization method. Thus, a definite conclusion regarding the superiority of one segmentation approach over the other cannot be drawn. This confirms the need for a preliminary assessment of feature reproducibility in radiomic workflows and is in line with literature emphasizing the importance of reproducibility in artificial intelligence and radiology [4648].
Some limitations of our study should be addressed. First, it has a retrospective design, as a prospective analysis is not strictly necessary for radiomic studies [49]. Second, the retrospective design accounts for the exclusion of contrast-enhanced MRI, which was not performed consistently in our series of lipomas and ALTs. This is in line with recent studies suggesting that the value of contrast administration may be limited in lipoma and ALT [6, 50], with no clear improvement in diagnostic accuracy following the addition of contrast-enhanced sequences to a non-contrast MRI protocol [50]. Finally, due to its scope, this was a single institution study, and the generalizability of our results should be confirmed on more varied datasets.

Conclusions

Radiomic features of lipoma and ALT extracted from T1-weighted and T2-weighted MRI sequences are reproducible regardless of the segmentation approach and segmentation method, although a minimal degree of segmentation variability exists and highlights the need to perform a preliminary reproducibility analysis in radiomic studies. As stable feature rates were similar between contour-focused and margin shrinkage segmentations, it could be reasonable to prefer the former approach for ease of use in clinical practice. Image intensity discretization with fixed bin width provided higher stable feature rates and feature ICC values compared to discretization with fixed bin number. Thus, the former discretization method might be favored when performing image pre-processing in future radiomic studies dealing with lipomatous soft-tissue tumors.

Declarations

Ethics Approval

Institutional Review Board approved this retrospective study and waived the need for informed consent. This study was performed in line with the principles of the Declaration of Helsinki.

Competing Interests

The authors declare no competing interests.
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://​creativecommons.​org/​licenses/​by/​4.​0/​.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Unsere Produktempfehlungen

e.Med Interdisziplinär

Kombi-Abonnement

Für Ihren Erfolg in Klinik und Praxis - Die beste Hilfe in Ihrem Arbeitsalltag

Mit e.Med Interdisziplinär erhalten Sie Zugang zu allen CME-Fortbildungen und Fachzeitschriften auf SpringerMedizin.de.

e.Med Radiologie

Kombi-Abonnement

Mit e.Med Radiologie erhalten Sie Zugang zu CME-Fortbildungen des Fachgebietes Radiologie, den Premium-Inhalten der radiologischen Fachzeitschriften, inklusive einer gedruckten Radiologie-Zeitschrift Ihrer Wahl.

Anhänge
Literatur
1.
Zurück zum Zitat Yee EJ, Stewart CL, Clay MR, McCarter MM: Lipoma and Its Doppelganger. Surg Clin North Am 102:637–656, 2022CrossRefPubMed Yee EJ, Stewart CL, Clay MR, McCarter MM: Lipoma and Its Doppelganger. Surg Clin North Am 102:637–656, 2022CrossRefPubMed
2.
Zurück zum Zitat WHO Classification of Tumours Editorial Board: WHO Classification of Tumours: Soft Tissue and Bone Tumours. International Agency for Research on Cancer Press, Lyon, France, 2020 WHO Classification of Tumours Editorial Board: WHO Classification of Tumours: Soft Tissue and Bone Tumours. International Agency for Research on Cancer Press, Lyon, France, 2020
3.
Zurück zum Zitat Gronchi A, Miah AB, Dei Tos AP, Abecassis N, Bajpai J, Bauer S, Biagini R, Bielack S, Blay JY, Bolle S, Bonvalot S, Boukovinas I, Bovee JVMG, Boye K, Brennan B, Brodowicz T, Buonadonna A, De Álava E, Del Muro XG, Dufresne A, Eriksson M, Fagioli F, Fedenko A, Ferraresi V, Ferrari A, Frezza AM, Gasperoni S, Gelderblom H, Gouin F, Grignani G, Haas R, Hassan AB, Hecker-Nolting S, Hindi N, Hohenberger P, Joensuu H, Jones RL, Jungels C, Jutte P, Kager L, Kasper B, Kawai A, Kopeckova K, Krákorová DA, Le Cesne A, Le Grange F, Legius E, Leithner A, Lopez-Pousa A, Martin-Broto J, Merimsky O, Messiou C, Mir O, Montemurro M, Morland B, Morosi C, Palmerini E, Pantaleo MA, Piana R, Piperno-Neumann S, Reichardt P, Rutkowski P, Safwat AA, Sangalli C, Sbaraglia M, Scheipl S, Schöffski P, Sleijfer S, Strauss D, Strauss S, Sundby Hall K, Trama A, Unk M, van de Sande MAJ, van der Graaf WTA, van Houdt WJ, Frebourg T, Casali PG, Stacchiotti S: Soft tissue and visceral sarcomas: ESMO–EURACAN–GENTURIS Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann Oncol 32:1348–1365, 2021CrossRefPubMed Gronchi A, Miah AB, Dei Tos AP, Abecassis N, Bajpai J, Bauer S, Biagini R, Bielack S, Blay JY, Bolle S, Bonvalot S, Boukovinas I, Bovee JVMG, Boye K, Brennan B, Brodowicz T, Buonadonna A, De Álava E, Del Muro XG, Dufresne A, Eriksson M, Fagioli F, Fedenko A, Ferraresi V, Ferrari A, Frezza AM, Gasperoni S, Gelderblom H, Gouin F, Grignani G, Haas R, Hassan AB, Hecker-Nolting S, Hindi N, Hohenberger P, Joensuu H, Jones RL, Jungels C, Jutte P, Kager L, Kasper B, Kawai A, Kopeckova K, Krákorová DA, Le Cesne A, Le Grange F, Legius E, Leithner A, Lopez-Pousa A, Martin-Broto J, Merimsky O, Messiou C, Mir O, Montemurro M, Morland B, Morosi C, Palmerini E, Pantaleo MA, Piana R, Piperno-Neumann S, Reichardt P, Rutkowski P, Safwat AA, Sangalli C, Sbaraglia M, Scheipl S, Schöffski P, Sleijfer S, Strauss D, Strauss S, Sundby Hall K, Trama A, Unk M, van de Sande MAJ, van der Graaf WTA, van Houdt WJ, Frebourg T, Casali PG, Stacchiotti S: Soft tissue and visceral sarcomas: ESMO–EURACAN–GENTURIS Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann Oncol 32:1348–1365, 2021CrossRefPubMed
4.
5.
Zurück zum Zitat Knebel C, Neumann J, Schwaiger BJ, Karampinos DC, Pfeiffer D, Specht K, Lenze U, von Eisenhart-Rothe R, Rummeny EJ, Woertler K, Gersing AS: Differentiating atypical lipomatous tumors from lipomas with magnetic resonance imaging: a comparison with MDM2 gene amplification status. BMC Cancer 19:309, 2019CrossRefPubMedPubMedCentral Knebel C, Neumann J, Schwaiger BJ, Karampinos DC, Pfeiffer D, Specht K, Lenze U, von Eisenhart-Rothe R, Rummeny EJ, Woertler K, Gersing AS: Differentiating atypical lipomatous tumors from lipomas with magnetic resonance imaging: a comparison with MDM2 gene amplification status. BMC Cancer 19:309, 2019CrossRefPubMedPubMedCentral
6.
Zurück zum Zitat Nardo L, Abdelhafez YG, Acquafredda F, Schirò S, Wong AL, Sarohia D, Maroldi R, Darrow MA, Guindani M, Lee S, Zhang M, Moawad AW, Elsayes KM, Badawi RD, Link TM: Qualitative evaluation of MRI features of lipoma and atypical lipomatous tumor: results from a multicenter study. Skeletal Radiol 49:1005–1014, 2020CrossRefPubMed Nardo L, Abdelhafez YG, Acquafredda F, Schirò S, Wong AL, Sarohia D, Maroldi R, Darrow MA, Guindani M, Lee S, Zhang M, Moawad AW, Elsayes KM, Badawi RD, Link TM: Qualitative evaluation of MRI features of lipoma and atypical lipomatous tumor: results from a multicenter study. Skeletal Radiol 49:1005–1014, 2020CrossRefPubMed
7.
Zurück zum Zitat O’Donnell PW, Griffin AM, Eward WC, Sternheim A, White LM, Wunder JS, Ferguson PC: Can Experienced Observers Differentiate between Lipoma and Well-Differentiated Liposarcoma Using Only MRI? Sarcoma 2013:982784, 2013PubMedPubMedCentral O’Donnell PW, Griffin AM, Eward WC, Sternheim A, White LM, Wunder JS, Ferguson PC: Can Experienced Observers Differentiate between Lipoma and Well-Differentiated Liposarcoma Using Only MRI? Sarcoma 2013:982784, 2013PubMedPubMedCentral
8.
Zurück zum Zitat Haidey J, Low G, Wilson MP: Radiomics-based approaches outperform visual analysis for differentiating lipoma from atypical lipomatous tumors: a review. Skeletal Radiol 52:1089–1100, 2023CrossRefPubMed Haidey J, Low G, Wilson MP: Radiomics-based approaches outperform visual analysis for differentiating lipoma from atypical lipomatous tumors: a review. Skeletal Radiol 52:1089–1100, 2023CrossRefPubMed
9.
Zurück zum Zitat Gitto S, Cuocolo R, Annovazzi A, Anelli V, Acquasanta M, Cincotta A, Albano D, Chianca V, Ferraresi V, Messina C, Zoccali C, Armiraglio E, Parafioriti A, Sciuto R, Luzzati A, Biagini R, Imbriaco M, Sconfienza LM: CT radiomics-based machine learning classification of atypical cartilaginous tumours and appendicular chondrosarcomas. EBioMedicine 68:103407, 2021CrossRefPubMedPubMedCentral Gitto S, Cuocolo R, Annovazzi A, Anelli V, Acquasanta M, Cincotta A, Albano D, Chianca V, Ferraresi V, Messina C, Zoccali C, Armiraglio E, Parafioriti A, Sciuto R, Luzzati A, Biagini R, Imbriaco M, Sconfienza LM: CT radiomics-based machine learning classification of atypical cartilaginous tumours and appendicular chondrosarcomas. EBioMedicine 68:103407, 2021CrossRefPubMedPubMedCentral
10.
Zurück zum Zitat Gitto S, Cuocolo R, van Langevelde K, van de Sande MAJ, Parafioriti A, Luzzati A, Imbriaco M, Sconfienza LM, Bloem JL: MRI radiomics-based machine learning classification of atypical cartilaginous tumour and grade II chondrosarcoma of long bones. EBioMedicine 75:103757, 2022CrossRefPubMed Gitto S, Cuocolo R, van Langevelde K, van de Sande MAJ, Parafioriti A, Luzzati A, Imbriaco M, Sconfienza LM, Bloem JL: MRI radiomics-based machine learning classification of atypical cartilaginous tumour and grade II chondrosarcoma of long bones. EBioMedicine 75:103757, 2022CrossRefPubMed
11.
Zurück zum Zitat Gillies RJ, Kinahan PE, Hricak H: Radiomics: Images Are More than Pictures, They Are Data. Radiology 278:563–577, 2016PubMed Gillies RJ, Kinahan PE, Hricak H: Radiomics: Images Are More than Pictures, They Are Data. Radiology 278:563–577, 2016PubMed
12.
Zurück zum Zitat Berenguer R, Pastor-Juan M del R, Canales-Vázquez J, Castro-García M, Villas MV, Mansilla Legorburo F, Sabater S: Radiomics of CT Features May Be Nonreproducible and Redundant: Influence of CT Acquisition Parameters. Radiology 288:407–415, 2018CrossRefPubMed Berenguer R, Pastor-Juan M del R, Canales-Vázquez J, Castro-García M, Villas MV, Mansilla Legorburo F, Sabater S: Radiomics of CT Features May Be Nonreproducible and Redundant: Influence of CT Acquisition Parameters. Radiology 288:407–415, 2018CrossRefPubMed
13.
Zurück zum Zitat Gitto S, Corino VDA, Annovazzi A, Milazzo Machado E, Bologna M, Marzorati L, Albano D, Messina C, Serpi F, Anelli V, Ferraresi V, Zoccali C, Aliprandi A, Parafioriti A, Luzzati A, Biagini R, Mainardi L, Sconfienza LM: 3D vs. 2D MRI radiomics in skeletal Ewing sarcoma: Feature reproducibility and preliminary machine learning analysis on neoadjuvant chemotherapy response prediction. Front Oncol 12:1016123, 2022 Gitto S, Corino VDA, Annovazzi A, Milazzo Machado E, Bologna M, Marzorati L, Albano D, Messina C, Serpi F, Anelli V, Ferraresi V, Zoccali C, Aliprandi A, Parafioriti A, Luzzati A, Biagini R, Mainardi L, Sconfienza LM: 3D vs. 2D MRI radiomics in skeletal Ewing sarcoma: Feature reproducibility and preliminary machine learning analysis on neoadjuvant chemotherapy response prediction. Front Oncol 12:1016123, 2022
14.
Zurück zum Zitat Pavic M, Bogowicz M, Würms X, Glatz S, Finazzi T, Riesterer O, Roesch J, Rudofsky L, Friess M, Veit-Haibach P, Huellner M, Opitz I, Weder W, Frauenfelder T, Guckenberger M, Tanadini-Lang S: Influence of inter-observer delineation variability on radiomics stability in different tumor sites. Acta Oncol 57:1070–1074, 2018CrossRefPubMed Pavic M, Bogowicz M, Würms X, Glatz S, Finazzi T, Riesterer O, Roesch J, Rudofsky L, Friess M, Veit-Haibach P, Huellner M, Opitz I, Weder W, Frauenfelder T, Guckenberger M, Tanadini-Lang S: Influence of inter-observer delineation variability on radiomics stability in different tumor sites. Acta Oncol 57:1070–1074, 2018CrossRefPubMed
15.
Zurück zum Zitat Gitto S, Cuocolo R, Emili I, Tofanelli L, Chianca V, Albano D, Messina C, Imbriaco M, Sconfienza LM: Effects of Interobserver Variability on 2D and 3D CT- and MRI-Based Texture Feature Reproducibility of Cartilaginous Bone Tumors. J Digit Imaging 34:820–832, 2021CrossRefPubMedPubMedCentral Gitto S, Cuocolo R, Emili I, Tofanelli L, Chianca V, Albano D, Messina C, Imbriaco M, Sconfienza LM: Effects of Interobserver Variability on 2D and 3D CT- and MRI-Based Texture Feature Reproducibility of Cartilaginous Bone Tumors. J Digit Imaging 34:820–832, 2021CrossRefPubMedPubMedCentral
16.
Zurück zum Zitat Kocak B, Ates E, Durmaz ES, Ulusan MB, Kilickesmez O: Influence of segmentation margin on machine learning–based high-dimensional quantitative CT texture analysis: a reproducibility study on renal clear cell carcinomas. Eur Radiol 29:4765–4775, 2019CrossRefPubMed Kocak B, Ates E, Durmaz ES, Ulusan MB, Kilickesmez O: Influence of segmentation margin on machine learning–based high-dimensional quantitative CT texture analysis: a reproducibility study on renal clear cell carcinomas. Eur Radiol 29:4765–4775, 2019CrossRefPubMed
17.
Zurück zum Zitat Duron L, Balvay D, Vande Perre S, Bouchouicha A, Savatovsky J, Sadik J-C, Thomassin-Naggara I, Fournier L, Lecler A: Gray-level discretization impacts reproducible MRI radiomics texture features. PLoS One 14:e0213459, 2019CrossRefPubMedPubMedCentral Duron L, Balvay D, Vande Perre S, Bouchouicha A, Savatovsky J, Sadik J-C, Thomassin-Naggara I, Fournier L, Lecler A: Gray-level discretization impacts reproducible MRI radiomics texture features. PLoS One 14:e0213459, 2019CrossRefPubMedPubMedCentral
18.
Zurück zum Zitat Veres G, Vas NF, Lyngby Lassen M, Béresová M, K. Krizsan A, Forgács A, Berényi E, Balkay L: Effect of grey-level discretization on texture feature on different weighted MRI images of diverse disease groups. PLoS One 16:e0253419, 2021 Veres G, Vas NF, Lyngby Lassen M, Béresová M, K. Krizsan A, Forgács A, Berényi E, Balkay L: Effect of grey-level discretization on texture feature on different weighted MRI images of diverse disease groups. PLoS One 16:e0253419, 2021
19.
Zurück zum Zitat Schwier M, van Griethuysen J, Vangel MG, Pieper S, Peled S, Tempany C, Aerts HJWL, Kikinis R, Fennessy FM, Fedorov A: Repeatability of Multiparametric Prostate MRI Radiomics Features. Sci Rep 9:9441, 2019ADSCrossRefPubMedPubMedCentral Schwier M, van Griethuysen J, Vangel MG, Pieper S, Peled S, Tempany C, Aerts HJWL, Kikinis R, Fennessy FM, Fedorov A: Repeatability of Multiparametric Prostate MRI Radiomics Features. Sci Rep 9:9441, 2019ADSCrossRefPubMedPubMedCentral
20.
Zurück zum Zitat Gitto S, Cuocolo R, Albano D, Morelli F, Pescatori LC, Messina C, Imbriaco M, Sconfienza LM: CT and MRI radiomics of bone and soft-tissue sarcomas: a systematic review of reproducibility and validation strategies. Insights Imaging 12:68, 2021CrossRefPubMedPubMedCentral Gitto S, Cuocolo R, Albano D, Morelli F, Pescatori LC, Messina C, Imbriaco M, Sconfienza LM: CT and MRI radiomics of bone and soft-tissue sarcomas: a systematic review of reproducibility and validation strategies. Insights Imaging 12:68, 2021CrossRefPubMedPubMedCentral
21.
Zurück zum Zitat Gitto S, Bologna M, Corino VDA, Emili I, Albano D, Messina C, Armiraglio E, Parafioriti A, Luzzati A, Mainardi L, Sconfienza LM: Diffusion-weighted MRI radiomics of spine bone tumors: feature stability and machine learning-based classification performance. Radiol Med 127:518–525, 2022CrossRefPubMedPubMedCentral Gitto S, Bologna M, Corino VDA, Emili I, Albano D, Messina C, Armiraglio E, Parafioriti A, Luzzati A, Mainardi L, Sconfienza LM: Diffusion-weighted MRI radiomics of spine bone tumors: feature stability and machine learning-based classification performance. Radiol Med 127:518–525, 2022CrossRefPubMedPubMedCentral
22.
Zurück zum Zitat Ugga L, Cuocolo R, Solari D, Guadagno E, D’Amico A, Somma T, Cappabianca P, del Basso de Caro ML, Cavallo LM, Brunetti A: Prediction of high proliferative index in pituitary macroadenomas using MRI-based radiomics and machine learning. Neuroradiology 61:1365–1373, 2019CrossRefPubMed Ugga L, Cuocolo R, Solari D, Guadagno E, D’Amico A, Somma T, Cappabianca P, del Basso de Caro ML, Cavallo LM, Brunetti A: Prediction of high proliferative index in pituitary macroadenomas using MRI-based radiomics and machine learning. Neuroradiology 61:1365–1373, 2019CrossRefPubMed
23.
Zurück zum Zitat Zwanenburg A, Vallières M, Abdalah MA, Aerts HJWL, Andrearczyk V, Apte A, Ashrafinia S, Bakas S, Beukinga RJ, Boellaard R, Bogowicz M, Boldrini L, Buvat I, Cook GJR, Davatzikos C, Depeursinge A, Desseroit M-C, Dinapoli N, Dinh CV, Echegaray S, El Naqa I, Fedorov AY, Gatta R, Gillies RJ, Goh V, Götz M, Guckenberger M, Ha SM, Hatt M, Isensee F, Lambin P, Leger S, Leijenaar RTH, Lenkowicz J, Lippert F, Losnegård A, Maier-Hein KH, Morin O, Müller H, Napel S, Nioche C, Orlhac F, Pati S, Pfaehler EAG, Rahmim A, Rao AUK, Scherer J, Siddique MM, Sijtsema NM, Socarras Fernandez J, Spezi E, Steenbakkers RJHM, Tanadini-Lang S, Thorwarth D, Troost EGC, Upadhaya T, Valentini V, van Dijk L V., van Griethuysen J, van Velden FHP, Whybra P, Richter C, Löck S: The Image Biomarker Standardization Initiative: Standardized Quantitative Radiomics for High-Throughput Image-based Phenotyping. Radiology 295:328–338, 2020CrossRefPubMed Zwanenburg A, Vallières M, Abdalah MA, Aerts HJWL, Andrearczyk V, Apte A, Ashrafinia S, Bakas S, Beukinga RJ, Boellaard R, Bogowicz M, Boldrini L, Buvat I, Cook GJR, Davatzikos C, Depeursinge A, Desseroit M-C, Dinapoli N, Dinh CV, Echegaray S, El Naqa I, Fedorov AY, Gatta R, Gillies RJ, Goh V, Götz M, Guckenberger M, Ha SM, Hatt M, Isensee F, Lambin P, Leger S, Leijenaar RTH, Lenkowicz J, Lippert F, Losnegård A, Maier-Hein KH, Morin O, Müller H, Napel S, Nioche C, Orlhac F, Pati S, Pfaehler EAG, Rahmim A, Rao AUK, Scherer J, Siddique MM, Sijtsema NM, Socarras Fernandez J, Spezi E, Steenbakkers RJHM, Tanadini-Lang S, Thorwarth D, Troost EGC, Upadhaya T, Valentini V, van Dijk L V., van Griethuysen J, van Velden FHP, Whybra P, Richter C, Löck S: The Image Biomarker Standardization Initiative: Standardized Quantitative Radiomics for High-Throughput Image-based Phenotyping. Radiology 295:328–338, 2020CrossRefPubMed
24.
Zurück zum Zitat Koo TK, Li MY: A Guideline of Selecting and Reporting Intraclass Correlation Coefficients for Reliability Research. J Chiropr Med 15:155–163, 2016CrossRefPubMedPubMedCentral Koo TK, Li MY: A Guideline of Selecting and Reporting Intraclass Correlation Coefficients for Reliability Research. J Chiropr Med 15:155–163, 2016CrossRefPubMedPubMedCentral
25.
Zurück zum Zitat Yushkevich PA, Piven J, Hazlett HC, Smith RG, Ho S, Gee JC, Gerig G: User-guided 3D active contour segmentation of anatomical structures: Significantly improved efficiency and reliability. Neuroimage 31:1116–1128, 2006CrossRefPubMed Yushkevich PA, Piven J, Hazlett HC, Smith RG, Ho S, Gee JC, Gerig G: User-guided 3D active contour segmentation of anatomical structures: Significantly improved efficiency and reliability. Neuroimage 31:1116–1128, 2006CrossRefPubMed
26.
Zurück zum Zitat Jenkinson M, Beckmann CF, Behrens TEJ, Woolrich MW, Smith SM: FSL. Neuroimage 62:782–790, 2012CrossRefPubMed Jenkinson M, Beckmann CF, Behrens TEJ, Woolrich MW, Smith SM: FSL. Neuroimage 62:782–790, 2012CrossRefPubMed
27.
Zurück zum Zitat van Griethuysen JJM, Fedorov A, Parmar C, Hosny A, Aucoin N, Narayan V, Beets-Tan RGH, Fillion-Robin J-C, Pieper S, Aerts HJWL: Computational Radiomics System to Decode the Radiographic Phenotype. Cancer Res 77:e104–e107, 2017CrossRefPubMedPubMedCentral van Griethuysen JJM, Fedorov A, Parmar C, Hosny A, Aucoin N, Narayan V, Beets-Tan RGH, Fillion-Robin J-C, Pieper S, Aerts HJWL: Computational Radiomics System to Decode the Radiographic Phenotype. Cancer Res 77:e104–e107, 2017CrossRefPubMedPubMedCentral
28.
Zurück zum Zitat Di Leo G, Sardanelli F: Statistical significance: p value, 0.05 threshold, and applications to radiomics—reasons for a conservative approach. Eur Radiol Exp 4:18, 2020 Di Leo G, Sardanelli F: Statistical significance: p value, 0.05 threshold, and applications to radiomics—reasons for a conservative approach. Eur Radiol Exp 4:18, 2020
29.
Zurück zum Zitat van der Walt S, Colbert SC, Varoquaux G: The NumPy Array: A Structure for Efficient Numerical Computation. Comput Sci Eng 13:22–30, 2011CrossRef van der Walt S, Colbert SC, Varoquaux G: The NumPy Array: A Structure for Efficient Numerical Computation. Comput Sci Eng 13:22–30, 2011CrossRef
30.
Zurück zum Zitat R Core Team: R: A language and environment for statistical computing, 2020 R Core Team: R: A language and environment for statistical computing, 2020
31.
Zurück zum Zitat Fanciullo C, Gitto S, Carlicchi E, Albano D, Messina C, Sconfienza LM: Radiomics of Musculoskeletal Sarcomas: A Narrative Review. J Imaging 8:45, 2022CrossRefPubMedPubMedCentral Fanciullo C, Gitto S, Carlicchi E, Albano D, Messina C, Sconfienza LM: Radiomics of Musculoskeletal Sarcomas: A Narrative Review. J Imaging 8:45, 2022CrossRefPubMedPubMedCentral
32.
Zurück zum Zitat Yin X, Liao H, Yun H, Lin N, Li S, Xiang Y, Ma X: Artificial intelligence-based prediction of clinical outcome in immunotherapy and targeted therapy of lung cancer. Semin Cancer Biol 86:146–159, 2022CrossRefPubMed Yin X, Liao H, Yun H, Lin N, Li S, Xiang Y, Ma X: Artificial intelligence-based prediction of clinical outcome in immunotherapy and targeted therapy of lung cancer. Semin Cancer Biol 86:146–159, 2022CrossRefPubMed
33.
Zurück zum Zitat Pang J, Xiu W, Ma X: Application of Artificial Intelligence in the Diagnosis, Treatment, and Prognostic Evaluation of Mediastinal Malignant Tumors. J Clin Med 12:2818, 2023CrossRefPubMedPubMedCentral Pang J, Xiu W, Ma X: Application of Artificial Intelligence in the Diagnosis, Treatment, and Prognostic Evaluation of Mediastinal Malignant Tumors. J Clin Med 12:2818, 2023CrossRefPubMedPubMedCentral
34.
Zurück zum Zitat Cuocolo R, Caruso M, Perillo T, Ugga L, Petretta M: Machine Learning in oncology: A clinical appraisal. Cancer Lett 481:55–62, 2020CrossRefPubMed Cuocolo R, Caruso M, Perillo T, Ugga L, Petretta M: Machine Learning in oncology: A clinical appraisal. Cancer Lett 481:55–62, 2020CrossRefPubMed
35.
Zurück zum Zitat Cay N, Mendi BAR, Batur H, Erdogan F: Discrimination of lipoma from atypical lipomatous tumor/well-differentiated liposarcoma using magnetic resonance imaging radiomics combined with machine learning. Jpn J Radiol 40:951–960, 2022CrossRefPubMed Cay N, Mendi BAR, Batur H, Erdogan F: Discrimination of lipoma from atypical lipomatous tumor/well-differentiated liposarcoma using magnetic resonance imaging radiomics combined with machine learning. Jpn J Radiol 40:951–960, 2022CrossRefPubMed
36.
Zurück zum Zitat Foreman SC, Llorián-Salvador O, David DE, Rösner VKN, Rischewski JF, Feuerriegel GC, Kramp DW, Luiken I, Lohse A-K, Kiefer J, Mogler C, Knebel C, Jung M, Andrade-Navarro MA, Rost B, Combs SE, Makowski MR, Woertler K, Peeken JC, Gersing AS: Development and Evaluation of MR-Based Radiogenomic Models to Differentiate Atypical Lipomatous Tumors from Lipomas. Cancers (Basel) 15:2150, 2023 Foreman SC, Llorián-Salvador O, David DE, Rösner VKN, Rischewski JF, Feuerriegel GC, Kramp DW, Luiken I, Lohse A-K, Kiefer J, Mogler C, Knebel C, Jung M, Andrade-Navarro MA, Rost B, Combs SE, Makowski MR, Woertler K, Peeken JC, Gersing AS: Development and Evaluation of MR-Based Radiogenomic Models to Differentiate Atypical Lipomatous Tumors from Lipomas. Cancers (Basel) 15:2150, 2023
37.
Zurück zum Zitat Gitto S, Interlenghi M, Cuocolo R, Salvatore C, Giannetta V, Badalyan J, Gallazzi E, Spinelli MS, Gallazzi M, Serpi F, Messina C, Albano D, Annovazzi A, Anelli V, Baldi J, Aliprandi A, Armiraglio E, Parafioriti A, Daolio PA, Luzzati A, Biagini R, Castiglioni I, Sconfienza LM: MRI radiomics-based machine learning for classification of deep-seated lipoma and atypical lipomatous tumor of the extremities. Radiol Med 128:989–998, 2023CrossRefPubMedPubMedCentral Gitto S, Interlenghi M, Cuocolo R, Salvatore C, Giannetta V, Badalyan J, Gallazzi E, Spinelli MS, Gallazzi M, Serpi F, Messina C, Albano D, Annovazzi A, Anelli V, Baldi J, Aliprandi A, Armiraglio E, Parafioriti A, Daolio PA, Luzzati A, Biagini R, Castiglioni I, Sconfienza LM: MRI radiomics-based machine learning for classification of deep-seated lipoma and atypical lipomatous tumor of the extremities. Radiol Med 128:989–998, 2023CrossRefPubMedPubMedCentral
38.
Zurück zum Zitat Leporq B, Bouhamama A, Pilleul F, Lame F, Bihane C, Sdika M, Blay J-Y, Beuf O: MRI-based radiomics to predict lipomatous soft tissue tumors malignancy: a pilot study. Cancer Imaging 20:78, 2020CrossRefPubMedPubMedCentral Leporq B, Bouhamama A, Pilleul F, Lame F, Bihane C, Sdika M, Blay J-Y, Beuf O: MRI-based radiomics to predict lipomatous soft tissue tumors malignancy: a pilot study. Cancer Imaging 20:78, 2020CrossRefPubMedPubMedCentral
39.
Zurück zum Zitat Malinauskaite I, Hofmeister J, Burgermeister S, Neroladaki A, Hamard M, Montet X, Boudabbous S: Radiomics and Machine Learning Differentiate Soft-Tissue Lipoma and Liposarcoma Better than Musculoskeletal Radiologists. Sarcoma 2020:7163453, 2020CrossRefPubMedPubMedCentral Malinauskaite I, Hofmeister J, Burgermeister S, Neroladaki A, Hamard M, Montet X, Boudabbous S: Radiomics and Machine Learning Differentiate Soft-Tissue Lipoma and Liposarcoma Better than Musculoskeletal Radiologists. Sarcoma 2020:7163453, 2020CrossRefPubMedPubMedCentral
40.
Zurück zum Zitat Sudjai N, Siriwanarangsun P, Lektrakul N, Saiviroonporn P, Maungsomboon S, Phimolsarnti R, Asavamongkolkul A, Chandhanayingyong C: Tumor-to-bone distance and radiomic features on MRI distinguish intramuscular lipomas from well-differentiated liposarcomas. J Orthop Surg Res 18:255, 2023CrossRefPubMedPubMedCentral Sudjai N, Siriwanarangsun P, Lektrakul N, Saiviroonporn P, Maungsomboon S, Phimolsarnti R, Asavamongkolkul A, Chandhanayingyong C: Tumor-to-bone distance and radiomic features on MRI distinguish intramuscular lipomas from well-differentiated liposarcomas. J Orthop Surg Res 18:255, 2023CrossRefPubMedPubMedCentral
41.
Zurück zum Zitat Tang Y, Cui J, Zhu J, Fan G: Differentiation Between Lipomas and Atypical Lipomatous Tumors of the Extremities Using Radiomics. J Magn Reson Imaging 56:1746–1754, 2022CrossRefPubMed Tang Y, Cui J, Zhu J, Fan G: Differentiation Between Lipomas and Atypical Lipomatous Tumors of the Extremities Using Radiomics. J Magn Reson Imaging 56:1746–1754, 2022CrossRefPubMed
42.
Zurück zum Zitat Yang Y, Zhou Y, Zhou C, Ma X: Novel computer aided diagnostic models on multimodality medical images to differentiate well differentiated liposarcomas from lipomas approached by deep learning methods. Orphanet J Rare Dis 17:158, 2022CrossRefPubMedPubMedCentral Yang Y, Zhou Y, Zhou C, Ma X: Novel computer aided diagnostic models on multimodality medical images to differentiate well differentiated liposarcomas from lipomas approached by deep learning methods. Orphanet J Rare Dis 17:158, 2022CrossRefPubMedPubMedCentral
43.
Zurück zum Zitat Sudjai N, Siriwanarangsun P, Lektrakul N, Saiviroonporn P, Maungsomboon S, Phimolsarnti R, Asavamongkolkul A, Chandhanayingyong C: Robustness of Radiomic Features: Two-Dimensional versus Three-Dimensional MRI-Based Feature Reproducibility in Lipomatous Soft-Tissue Tumors. Diagnostics (Basel) 13:258, 2023 Sudjai N, Siriwanarangsun P, Lektrakul N, Saiviroonporn P, Maungsomboon S, Phimolsarnti R, Asavamongkolkul A, Chandhanayingyong C: Robustness of Radiomic Features: Two-Dimensional versus Three-Dimensional MRI-Based Feature Reproducibility in Lipomatous Soft-Tissue Tumors. Diagnostics (Basel) 13:258, 2023
44.
Zurück zum Zitat Leijenaar RTH, Nalbantov G, Carvalho S, van Elmpt WJC, Troost EGC, Boellaard R, Aerts HJW., Gillies RJ, Lambin P: The effect of SUV discretization in quantitative FDG-PET Radiomics: the need for standardized methodology in tumor texture analysis. Sci Rep 5:11075, 2015 Leijenaar RTH, Nalbantov G, Carvalho S, van Elmpt WJC, Troost EGC, Boellaard R, Aerts HJW., Gillies RJ, Lambin P: The effect of SUV discretization in quantitative FDG-PET Radiomics: the need for standardized methodology in tumor texture analysis. Sci Rep 5:11075, 2015
45.
Zurück zum Zitat Koçak B, Yüzkan S, Mutlu S, Karagülle M, Kala A, Kadıoğlu M, Solak S, Sunman Ş, Temiz ZH, Ganiyusufoğlu AK: Influence of image preprocessing on the segmentation-based reproducibility of radiomic features: in vivo experiments on discretization and resampling parameters. Diagn Interv Radiol, https://doi.org/10.4274/dir.2023.232543, December 11, 2023 Koçak B, Yüzkan S, Mutlu S, Karagülle M, Kala A, Kadıoğlu M, Solak S, Sunman Ş, Temiz ZH, Ganiyusufoğlu AK: Influence of image preprocessing on the segmentation-based reproducibility of radiomic features: in vivo experiments on discretization and resampling parameters. Diagn Interv Radiol, https://​doi.​org/​10.​4274/​dir.​2023.​232543, December 11, 2023
46.
Zurück zum Zitat Akinci D’Antonoli T, Cavallo AU, Vernuccio F, Stanzione A, Klontzas ME, Cannella R, Ugga L, Baran A, Fanni SC, Petrash E, Ambrosini I, Cappellini LA, van Ooijen P, Kotter E, Pinto dos Santos D, Cuocolo R: Reproducibility of radiomics quality score: an intra- and inter-rater reliability study. Eur Radiol, https://doi.org/10.1007/s00330-023-10217-x, September 21, 2023 Akinci D’Antonoli T, Cavallo AU, Vernuccio F, Stanzione A, Klontzas ME, Cannella R, Ugga L, Baran A, Fanni SC, Petrash E, Ambrosini I, Cappellini LA, van Ooijen P, Kotter E, Pinto dos Santos D, Cuocolo R: Reproducibility of radiomics quality score: an intra- and inter-rater reliability study. Eur Radiol, https://​doi.​org/​10.​1007/​s00330-023-10217-x, September 21, 2023
47.
Zurück zum Zitat Kocak B, Baessler B, Bakas S, Cuocolo R, Fedorov A, Maier-Hein L, Mercaldo N, Müller H, Orlhac F, Pinto dos Santos D, Stanzione A, Ugga L, Zwanenburg A: CheckList for EvaluAtion of Radiomics research (CLEAR): a step-by-step reporting guideline for authors and reviewers endorsed by ESR and EuSoMII. Insights Imaging 14:75, 2023CrossRefPubMedPubMedCentral Kocak B, Baessler B, Bakas S, Cuocolo R, Fedorov A, Maier-Hein L, Mercaldo N, Müller H, Orlhac F, Pinto dos Santos D, Stanzione A, Ugga L, Zwanenburg A: CheckList for EvaluAtion of Radiomics research (CLEAR): a step-by-step reporting guideline for authors and reviewers endorsed by ESR and EuSoMII. Insights Imaging 14:75, 2023CrossRefPubMedPubMedCentral
48.
Zurück zum Zitat Mongan J, Moy L, Kahn CE: Checklist for Artificial Intelligence in Medical Imaging (CLAIM): A Guide for Authors and Reviewers. Radiol Artif Intell 2:e200029, 2020CrossRefPubMedPubMedCentral Mongan J, Moy L, Kahn CE: Checklist for Artificial Intelligence in Medical Imaging (CLAIM): A Guide for Authors and Reviewers. Radiol Artif Intell 2:e200029, 2020CrossRefPubMedPubMedCentral
49.
Zurück zum Zitat Lubner MG, Smith AD, Sandrasegaran K, Sahani D V., Pickhardt PJ: CT Texture Analysis: Definitions, Applications, Biologic Correlates, and Challenges. Radiographics 37:1483–1503, 2017CrossRefPubMed Lubner MG, Smith AD, Sandrasegaran K, Sahani D V., Pickhardt PJ: CT Texture Analysis: Definitions, Applications, Biologic Correlates, and Challenges. Radiographics 37:1483–1503, 2017CrossRefPubMed
50.
Zurück zum Zitat Shannon BA, Ahlawat S, Morris CD, Levin AS, Fayad LM: Do contrast-enhanced and advanced MRI sequences improve diagnostic accuracy for indeterminate lipomatous tumors? Radiol Med 127:90–99, 2022CrossRefPubMed Shannon BA, Ahlawat S, Morris CD, Levin AS, Fayad LM: Do contrast-enhanced and advanced MRI sequences improve diagnostic accuracy for indeterminate lipomatous tumors? Radiol Med 127:90–99, 2022CrossRefPubMed
Metadaten
Titel
Effects of Interobserver Segmentation Variability and Intensity Discretization on MRI-Based Radiomic Feature Reproducibility of Lipoma and Atypical Lipomatous Tumor
verfasst von
Salvatore Gitto
Renato Cuocolo
Vincenzo Giannetta
Julietta Badalyan
Filippo Di Luca
Stefano Fusco
Giulia Zantonelli
Domenico Albano
Carmelo Messina
Luca Maria Sconfienza
Publikationsdatum
08.02.2024
Verlag
Springer International Publishing
Erschienen in
Journal of Imaging Informatics in Medicine
Print ISSN: 2948-2925
Elektronische ISSN: 2948-2933
DOI
https://doi.org/10.1007/s10278-024-00999-x

Mammakarzinom: Brustdichte beeinflusst rezidivfreies Überleben

26.05.2024 Mammakarzinom Nachrichten

Frauen, die zum Zeitpunkt der Brustkrebsdiagnose eine hohe mammografische Brustdichte aufweisen, haben ein erhöhtes Risiko für ein baldiges Rezidiv, legen neue Daten nahe.

„Übersichtlicher Wegweiser“: Lauterbachs umstrittener Klinik-Atlas ist online

17.05.2024 Klinik aktuell Nachrichten

Sie sei „ethisch geboten“, meint Gesundheitsminister Karl Lauterbach: mehr Transparenz über die Qualität von Klinikbehandlungen. Um sie abzubilden, lässt er gegen den Widerstand vieler Länder einen virtuellen Klinik-Atlas freischalten.

Klinikreform soll zehntausende Menschenleben retten

15.05.2024 Klinik aktuell Nachrichten

Gesundheitsminister Lauterbach hat die vom Bundeskabinett beschlossene Klinikreform verteidigt. Kritik an den Plänen kommt vom Marburger Bund. Und in den Ländern wird über den Gang zum Vermittlungsausschuss spekuliert.

Darf man die Behandlung eines Neonazis ablehnen?

08.05.2024 Gesellschaft Nachrichten

In einer Leseranfrage in der Zeitschrift Journal of the American Academy of Dermatology möchte ein anonymer Dermatologe bzw. eine anonyme Dermatologin wissen, ob er oder sie einen Patienten behandeln muss, der eine rassistische Tätowierung trägt.

Update Radiologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.