Skip to main content

Open Access 09.05.2024 | RESEARCH

Early postoperative beta-blockers are associated with improved cardiac output after late complete repair of tetralogy of Fallot: a retrospective cohort study

verfasst von: Guillaume Maitre, Damien Schaffner, Sebastiano A. G. Lava, Marie-Hélène Perez, Stefano Di Bernardo

Erschienen in: European Journal of Pediatrics

download
DOWNLOAD
print
DRUCKEN
insite
SUCHEN

Abstract

Tetralogy of Fallot is the most common cyanotic congenital heart disease. For decades, our institution has cared for humanitarian patients with late presentation of tetralogy of Fallot. They are characterized by severe right ventricular hypertrophy with consecutive diastolic dysfunction, increasing the risk of postoperative low cardiac output syndrome (LCOS). By right ventricular restrictive physiology, we hypothesized that patients receiving early postoperative beta-blockers (within 48 h after cardiopulmonary bypass) may have better diastolic function and cardiac output. This is a retrospective cohort study in a single-center tertiary pediatric intensive care unit. We included > 1-year-old humanitarian patients with a confirmed diagnosis of tetralogy of Fallot undergoing a complete surgical repair between 2005 and 2019. We measured demographic data, preoperative echocardiographic and cardiac catheterization measures, postoperative mean heart rate, vasoactive-inotropic scores, LCOS scores, length of stay, and mechanical ventilation duration. One hundred sixty-five patients met the inclusion criteria. Fifty-nine patients (36%) received early postoperative beta-blockers, associated with a lower mean heart rate, higher vasoactive-inotropic scores, and lower LCOS scores during the first 48 h following cardiopulmonary bypass. There was no significant difference in lengths of stay and ventilation.
    Conclusion: Early postoperative beta-blockers lower the prevalence of postoperative LCOS at the expense of a higher need for vasoactive drugs without any consequence on length of stay and ventilation duration. This approach may benefit the specific population of children undergoing a late complete repair of tetralogy of Fallot.
What is Known:
• Prevalence of low cardiac output syndrome is high following a late complete surgical repair of tetralogy of Fallot.
What is New:
• Early postoperative beta-blockade is associated with lower heart rate, prolonged relaxation time, and lower prevalence of low cardiac output syndrome.
• Negative chronotropic agents like beta-blockers may benefit selected patients undergoing a late complete repair of tetralogy of Fallot, who are numerous in low-income countries.
Hinweise
Communicated by Gregorio Milani

Supplementary Information

The online version contains supplementary material available at https://​doi.​org/​10.​1007/​s00431-024-05597-1.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Abkürzungen
b-B
Beta-blockers
CPB
Cardiopulmonary bypass
CVP
Central venous pressure
LCOS
Low cardiac output syndrome
PICU
Pediatric intensive care unit
PR
Pulmonary regurgitation
PS
Pulmonary stenosis
PVSR
Pulmonary valve-sparing repair
RAP
Right atrial pressure
RV
Right ventricle
RVEDP
Right ventricular end-diastolic pressure
RVH
Right ventricular hypertrophy
RVOT
Right ventricular outflow tract
ToF
Tetralogy of Fallot
TP
Transpulmonary patch
VIS
Vasoactive inotropic score

Introduction

In low-income countries, surgical repair of tetralogy of Fallot (ToF) is not always possible, and humanitarian charities refer children to hospitals that offer this kind of surgery. We recently described our cohort’s surgical outcomes of late complete repair of ToF [1]. Because of inherent diagnostic and logistical delays, these children are virtually always older than 1 year old when admitted for surgery. Consequently, they tend to have already developed a relevant right ventricular hypertrophy (RVH), putting them at high risk of postoperative low cardiac output syndrome (LCOS). The severity of RVH and associated restrictive physiology is related to the duration of pressure overload, which, in turn, is correlated with patients’ age and severity of pulmonary stenosis (PS) [2, 3]. Long-lasting RVH and hypoxia (leading to myocardial fibrosis) may be responsible for restrictive right ventricle (RV) physiology, which was demonstrated in patients undergoing ToF correction as soon as at 6 months of age [4, 5]. Looking at the early postoperative course in 50 patients with ToF, Sachdev et al. showed diastolic dysfunction in half of them with a significant association between restrictive RV physiology, prolonged stay, longer duration of inotropic support, and increased needs for diuretics [5]. Restrictive physiology manifests itself through diastolic dysfunction with higher filling pressures consecutive to (1) slowed or incomplete relaxation, (2) reduced ventricular filling, and (3) altered passive elastic properties due to collagen accumulation or altered collagen architecture [6]. Diastolic function plays a significant role in cardiac output [7]. Patients with RV restrictive physiology are at higher risk of postoperative LCOS despite excellent systolic function. The postoperative RV diastolic function is affected by the cardiopulmonary bypass (CPB) duration, myocardial edema, potential ventriculotomy, myocardial infundibular resection, and patches used to close the ventricular septal defect or enlarge the right ventricular outflow tract (RVOT) [4]. Propranolol, a nonselective beta-blocker (b-B), reduces RV hypercontractility, increases relaxation time and peripheral vascular resistance, and allows better pulmonary blood flow [810]. It has been used since the 1960s to prevent cyanotic spells [1114]. Furthermore, an effect of propranolol on cardiomyocyte proliferation was recently described [1517]. Its use was also described in adult patients with RV dysfunction following ToF repair [18].
The place of negative chronotropic agents in preventing LCOS after late complete ToF repair is unknown. In the context of pre-existing RV restrictive physiology and diastolic dysfunction, we hypothesized that early postoperative b-B administration may foster diastolic function and, thus, cardiac output unless it is contraindicated by severe pulmonary regurgitation (PR) or atrioventricular block, for instance. The objective of our study was to compare postoperative outcomes with the early postoperative use of b-B after late complete surgical ToF repair.

Methods

This is an observational retrospective cohort study. It was conducted at the Lausanne University Hospital, a tertiary care teaching center performing approximately 150 to 200 congenital open-heart surgeries annually. Ethical approval was obtained from the local ethical board in December 2019 (ID number 2019–01701). Consent for study inclusion was waived.
Eligible for inclusion was > 1-year-old patients referred to our institution by humanitarian associations for a complete ToF surgical repair between January 2005 and January 2019. Children under 12 months at surgical repair, undergoing a palliative procedure, or patients with extracardiac malformations requiring additional surgical interventions during the CPB were excluded. We retrospectively collected the clinical information from the hospital’s electronic medical records (Soarian, Siemens® and MetaVisionSuite, iMDSoft®). This included demographic information and anatomic cardiac diagnoses (including preoperative cardiac catheterization and transthoracic echocardiogram) at baseline. In addition, a pediatric cardiologist retrospectively measured the cardiac anatomic structures on transthoracic echocardiograms (Xcelera, Philips®). The following preoperative measures were collected: pulmonary valve diameter and Z-score, transpulmonary valve gradient, RVOT diameter, RV anterior wall thickness. In the absence of published right ventricular free wall thickness Z-scores, we expressed the degree of RVH by using the RV/LV ratio representing the ratio between RV anterior wall thickness and the left ventricle posterior wall thickness in diastole. This ratio is between 0.3 and 0.34 for healthy adults, whilst an RV/LV ratio > 0.8 represents significant RVH [19]. More directly correlated with RV diastolic function, the filling pressures of the right heart (mean right atrial pressure, RAP, and right ventricular end-diastolic pressure, RVEDP) were measured during preoperative cardiac catheterization. Missing data were excluded from the analyses.
We compared the following outcomes in relation to the postoperative administration of b-B within 48 h after CPB: length of pediatric intensive care unit (PICU) stay (number of days between PICU admission and PICU discharge), length of hospital stay (number of days between hospital admission and hospital discharge), total ventilation duration (hours of invasive ventilation, IV, and non-invasive ventilation, NIV). Mortality until hospital discharge and use of mechanical support were recorded. Mean heart rate and mean central venous pressure (CVP) were collected. Vaosactive-inotropic score (VIS) and prevalence of LCOS were calculated within 6-h intervals until 48 h after weaning from CPB. VIS was calculated as follows: dopamine (mg/kg/min) + dobutamine (mg/kg/ min) + [100 × adrenaline (mg/kg/min)] + [10 × milrinone (mg/kg/min)] + [10,000 × vasopressin (U/kg/ min)] + [100 × noradrenaline (mg/kg/min)] [20]. Invasive and continuous cardiac output monitoring is not routinely performed in the pediatric population; healthcare providers rely on clinical evaluation and indirect parameters of low cardiac output [21]. Therefore, we retrospectively defined LCOS with a composite score adapted from previously used LCOS criteria (Table 1) [2224]. LCOS score was created as follows: lactatemia: 0 point if < 2 mmol/L, 1 point if 2–4 mmol/L, 2 points if > 4 mmol/L; DavO2 (= SaO2–ScvO2): 0 point if < 25%, 1 point if 25–35%, 2 points if > 35%); DavCO2 (= PvCO2–PaCO2): 0 point if < 6 mmHg, 1 point if 6–10 mmHg, 2 points if > 10 mmHg; urine output: 0 point if > 1 mL/kg/h, 1 point if 0.5–1 mL/kg/h, 2 points if < 0.5 mL/kg/h. No point was assigned in case of a missing variable. LCOS was defined as a LCOS score ≥ 6 points. To compare VIS and LCOS prevalence, a patient on b-B was defined as receiving b-B at the time of the post-CPB interval of interest.
Table 1
Demographic data
 
All patients (n = 165)
Within 48 postoperative hours
  
No beta-blockers (n = 106, 64%)
Beta-blockers (n = 59, 36%)
p value
Sex male (n = 165)
105 (64%)
72 (68%)
33 (56%)
0.13
Age (years) (n = 165)
4.5 [3.0; 6.3]
4.5 [3.0; 6.3]
4.3 [2.8; 6.0]
0.89
Weight (kg) (n = 165)
13.5 [10.9; 16.5]
13.5 [10.9; 16.1]
14 [10.9; 17.0]
0.61
Weight (Z-score) (n = 165)
−1.7 [−2.5; −1.0]
−1.8 [−2.6; −1.1]
−1.7 [−2.5; −0.8]
0.52
Height (cm) (n = 165)
98 [88; 112]
97 [87; 111]
99 [88; 114]
0.65
Height (Z-score) (n = 165)
−1.35 [−2.4; −0.7]
−1.5 [−2.5; −0.7]
−1.2 [−2.2; −0.5]
0.11
BMI (kg/m2) (n = 165)
14.0 [12.8; 15.2]
14.1 [12.9; 15.3]
13.8 [12.7; 15]
0.51
BMI (Z-score) (n = 165)
−1.3 [−2.3; −0.3]
−1.3 [−2.3; −0.3]
−1.3 [−2.5; −0.4]
0.56
BSA (m2) (n = 165)
0.6 [0.5; 0.7]
0.6 [0.5; 0.7]
0.6 [0.5; 0.8]
0.62
Baseline SpO2 (%) (n = 148)
78 [70; 85]
79 [71; 86]
77 [70; 81]
0.09
Baseline Hb (g/L) (n = 158)
163 [142; 190]
140 [101; 163]
163 [144; 196]
0.54
Baseline Hct (%) (n = 158)
50.5 [44; 59]
50 [44; 61]
51 [45; 58]
0.82
Demographics data displayed for all patients and subgroups in relation to early postoperative use of beta-blockers. Discrete variables are displayed as numbers (proportion), and continuous variables are displayed as median [interquartile range]. Missing data are displayed in the first column. Significance is inferred with a p value < 0.05 and identified with a *
BMI body mass index, BSA body surface area, Hb hemoglobin, Hct hematocrit, IHA initial health assessment, SpO2 pulsatile oxygen saturation
Statistical analysis was performed with Stata 17.0 (StatCorp®). Proportions are presented as absolute numbers and percentages and were analyzed with the Chi-square test or Fisher’s exact test, as appropriate. Continuous variables are presented as median and [interquartile range] and were compared with the Wilcoxon-Mann–Whitney test, respectively, the Kruskal–Wallis one-way ANOVA test. Relationships between continuous variables were assessed with the Pearson correlation test, continuous and ordinal variables with Kendall’s Tau test, and continuous and categorical variables with the Point-Biserial correlation test. Statistical significance was inferred at a value of p < 0.05.

Results

One hundred sixty-nine patients met the inclusion criteria. Four were excluded because of extracardiac malformations (severe tracheal stenosis). There was no significant difference in demographic data and baseline characteristics (like anthropometric measures or nutritional status [25]) between patients who received early postoperative b-B and those who did not (Table 1). There was a significant increase in patients receiving b-B in the early postoperative period over the years: while no patient received early postoperative b-B between 2005 and 2010, and > 50% was treated with b-B between 2014 and 2018.
All treated patients received oral propranolol with a median unitary dose of 0.6 mg/kg [0.4;0.9] and a maximal dose of 0.8 mg/kg, three to four times a day 0.8 mg/kg [0.5;1], three to four times a day. For a minority of them (13.5%), intravenous esmolol was initially used with a median dose of 45 mg/kg/min [26.7;68.9] and a maximal dose of 90 mg/kg/min [38.4; 445.5]. The timing of initiation of b-B, either intravenous or enteral, was 5.3 h after CPB [3.8; 21.5]. There was no significant correlation between the time of initiation and preoperative echocardiographic measures of RVH and PS or the right-heart filling pressures (RAP and RVEDP). Neither the use of early postoperative b-B nor the propranolol dose was significantly associated with the preoperative echocardiographic and cardiac catheterization measures (eTable 1), with the notable exception that patients with an RV/LV ratio > 1.2 were more likely to receive early postoperative b-B (RR 1.4 [1.1; 1.8], p = 0.02, Fig. 1). The median of mean CVP was between 10.9 and 12 mmHg for every postoperative 6-h interval. There was no significant difference in mean CVP between the two subgroups (eTable 2).
The proportions of patients receiving postoperative b-B differed significantly according to the type of surgical correction. Three out of 25 (12%) patients with the insertion of a valved conduit received postoperative b-B. At the same time, this was the case for 30/63 (48%) and 26/77 (34%) of patients with transpulmonary patch (TP) and pulmonary valve-sparing repair (PVSR), respectively (p = 0.006). Conversely, more than half of the patients treated with early postoperative b-B had undergone a repair through TP (eFigure 1). The timing of initiation of b-B did not significantly differ as per the chosen surgical intervention: 5.1 h [3.5;21.2] for TP, 10.6 [4.8;23.0] for PVSR, and 4.0 [4.0;5.0] for RV-PA valved conduit insertion (p = 0.09). The duration of CPB did not significantly differ between patients having received postoperative b-B and those who did not (139 min [112;170] vs. 121.5 min [105;149], p = 0.06). Similarly, there was no correlation between the duration of CPB and the timing of initiation of b-B (p = 0.39). However, patients undergoing a TP had a significantly longer CPB compared with the two other surgical strategies (147 min [118–173] vs. 114 [94–135] for PVSR and 130 [113–146] for RV-PA, p = 0.0001).
There was no significant difference in the length of PICU and hospital stay, invasive, non-invasive, and total ventilation durations between patients receiving early postoperative b-B or not (Table 2). No mortality or mechanical support was encountered in our cohort. The use of beta-blockers within the first 48 postoperative hours was associated with a significantly lower mean heart rate from the 18–24 h post-CPB interval. This difference was significant for several time intervals (Fig. 2). VIS was significantly higher for those receiving early postoperative b-B from 6 to 12 h post-CPB (Table 2). There was no significant association between VIS and the occurrence of LCOS, except for the interval between 36 and 42 h post-CPB for patients receiving b-B (eTable 3).
Table 2
Comparison of patient outcomes with early postoperative beta-blockers use and Vasoactive-Inotropic Scores (VIS) within 48 h following CPB. Continuous variables are displayed as median [interquartile range]. Missing data are displayed in the table. Significance is inferred with a p value < 0.05 and identified with a *
 
No early postoperative b-B
Early postoperative b-B
p value
Length of PICU stay (days)
6.0 [4.7; 7.7] n = 106
6.1 [4.7;8.1] n = 59
0.7
Length of hospital stay (days)
10 [8; 14] n = 106
8 [7;12] n = 59
0.13
Invasive ventilation duration (hours)
25.7 [22.0;69.8] n = 99
43.5 [19.0;76.5] n = 55
0.85
Non-invasive ventilation duration (hours)
19.1 [11.0;24.2] n = 28
16.1 [10.3;22] n = 25
0.53
Total ventilation duration (hours)
28.3 [22.8;71.8] n = 99
44.7 [22.5;91.4] n = 55
0.46
VIS—0–6 h post CPB
26.1 [19.0; 50.0] n = 126
40.5 [20.5; 55.6] n = 30
0.07
VIS—6–12 h post CPB
25.7 [12.8; 37.3] n = 120
34.5 [19.0; 53.0] n = 36
0.02*
VIS—12–18 h post CPB
29.3 [14.6; 44.5] n = 119
40.9 [25.6; 60.5] n = 37
0.01*
VIS—18–24 h post CPB
29.8 [14.6; 44.8] n = 108
38.6 [21.1; 57.8] n = 48
0.02*
VIS—24–30 h post CPB
27.1 [12.4; 41.7] n = 102
40.9 [21; 52.6] n = 54
0.01*
VIS—30–36 h post CPB
27.7 [11.5; 40.8] n = 102
38.9 [21.9; 51.5] n = 54
0.01*
VIS—36–42 h post CPB
28.4 [12.4; 41.8] n = 102
38.5 [22; 53.4] n = 54
0.01*
VIS—42–48 h post CPB
29 [12.4; 41.4] n = 99
40.2 [22; 53.4] n = 57
0.01*
b-B beta-blockers, CPB cardiopulmonary bypass
At every 6-h interval, the LCOS prevalence was lower in the group treated with postoperative b-B, ranging from 1/31 (3%) to 9/49 (18%) vs. 29/134 (22%) to 37/110 (38%) in the non-treated group (Fig. 3). These differences were significant except for the 18–24 h post-CPB interval. Looking at subgroups by surgical strategy, the significant differences were essentially for patients undergoing a complete repair with a TP (eTable 4).

Discussion

At our institution, the practice of early postoperative b-B with propranolol after TOF repair was started in 2011 and quickly became a common practice, with more than 50% of patients treated between 2014 and 2019. This proportion of postoperative b-B is much higher than previously reported in a North American national retrospective database review [26], in which 10% of admitted patients received postoperative b-B. However, this study’s population was not comparable with ours. Their use was based on individual intensivist’s preferences according to the patient’s clinical situation and evolution during the first postoperative hours. Pre-existing or new heart block was a contraindication to b-B administration. From a theoretical framework, the diastolic function is correlated with relaxation time; with a lower heart rate, more time is spent in diastole, and ventricular filling capacity is enhanced. This concept was also well described in adults presenting heart failure with preserved left ventricular ejection fraction [27]. Indeed, in our cohort, early postoperative b-B significantly decreased the mean heart rate from 18 h after CPB. This negative chronotropic effect lasted until at least 48 h after CPB. This means that the clinical goal of increasing relaxation time was achieved, with an assumptive improvement of their diastolic function. Many clinical aspects (peripheral perfusion, perfusion pressure, postoperative echocardiogram) may play a role in selecting patients started on early postoperative b-B; we could not point those out. However, our retrospective analysis showed that patients with a higher preoperative RV/LV ratio were more likely to receive early postoperative b-B. A thicker RV predisposes to diastolic dysfunction, and we hypothesized that this may have prompted clinicians to use early postoperative b-B.
We described the various surgical strategies for ToF repair and their determinants in a previous publication [1]. The low proportion of patients undergoing a PVSR may be explained by the poor quality of the pulmonary valve after years of unrepaired ToF. The humanitarian nature of the surgical management may also prompt the surgeon to opt for a definitive procedure with less risk for reoperation. In our cohort, patients undergoing a repair with TP were more likely to receive early postoperative b-B. We showed in a previous descriptive study on the same cohort that patients undergoing a repair with TP had a higher RVOT gradient, smaller pulmonary valve annulus, and greater RV hypertrophy [1]. These significative differences in the preoperative echocardiographic assessment may prompt the clinician to use early postoperative beta-blockers. Due to diastolic dysfunction with high filling pressures, the expected degree of PR consecutive to a TP may not be relevant in the early postoperative course, so this surgical strategy, as such, does not prohibit the use of b-B during the initial postoperative period. Consequently, patients undergoing a repair with TP also presented a significantly lower prevalence of postoperative LCOS. Their longer CPB duration than other surgical strategies may partly explain the more frequent use of b-B in this patient group. Although we did not identify significant differences in preoperative markers of RVH, PS, and filling pressures, a more severe obstruction of the RVOT not allowing the surgeon to spare the pulmonary valve could also have been contributive.
This study highlights that early postoperative b-B after complete repair of ToF is associated with a lower prevalence of LCOS at the expense of more vasoactive support. However, the occurrence of LCOS was not associated with a lower vasoactive-inotropic score. We interpret the significant association between early postoperative b-B and lower LCOS prevalence as a sign of improved diastolic function in the treated cohort. Indeed, rather than waiting for signs of a good cardiac output before starting b-B, whose indication would be questionable at that time point, we hypothesize that (in this retrospective observational study) clinicians were tempted to start b-B early with the aim to enhance the diastolic function during the critical early postoperative period. The presented data supports the notion that early postoperative b-B is beneficial in minimizing or preventing LCOS in this setting. A greater need for vasoactive drugs following the administration of b-B is anticipated because of the inhibitory effect on sympathetic activation. The higher VIS scores than usually reported in similar contexts are explained by the previously described strategy followed at our unit using milrinone and noradrenaline instead of adrenaline in the postoperative management [28]. Despite a greater need for vasoactive drugs, patients on early postoperative b-B experience the same postoperative course as those who were not treated. There were no significant differences in the length of PICU, hospital stay, or ventilation durations. The older age of our cohort partially explains the relatively short ventilation durations. While comparing the PICU length of stay across several studies, logistical factors related to our internal institutional organization and the step-down unit’s capacity should be considered as relevant modulators of this outcome measure.
The retrospective nature of our study confers various limitations. First, early postoperative assessment was based on inotropic score, while clinical and echocardiographic data were unavailable. For instance, presence or absence of hepatomegaly and hepatojugular reflux, jugular vein assessment, echocardiographic measures of diastolic function, quantification of PR, and residual dynamic PS would have provided additional insights. Mean CVP measurements were high in every postoperative 6-h interval for all patients and may represent an indirect sign of diastolic dysfunction in the absence of objective assessment. Similarly, markers of end-organ impairment would have allowed a more comprehensive analysis. Second, over 13 years, many changes may have occurred (change of cardiac surgeons, evolution of preoperative assessment, surgical techniques, and postoperative management) [29]. For instance, sedation strategies evolved with the uptake of alpha-agonist agents (clonidine, dexmedetomidine) with a negative chronotropic effect confounding the effect of b-B. We were not able to adjust for these confounding factors. Moreover, it should be acknowledged that despite a careful and restrictive scoring system, the retrospective definition of LCOS, albeit frequently used in pediatric studies [2224], and probably the best research tool currently available to measure its occurrence, still suffers from some imprecision. Finally, longer-term outcomes (like functional capacity, for instance [30]) were not assessed.
The results of this study must be interpreted with an understanding of the peculiarities of the included population, which preclude any generalizability to other pediatric populations. In particular, we would not recommend early postoperative b-B for neonates and infants undergoing a ToF repair, as they do not present the same degree of RVH and fibrosis as our cohort, and, most importantly, they are more exposed to negative inotropism.
To the best of our knowledge, this is the first descriptive study about the postoperative use of b-B in a population of children with late surgical repair of ToF. Furthermore, this cohort is at the same time also one of the biggest ever described with this condition [31]. This population’s representatives are numerous in developing countries. This study brings unprecedented data that informs some knowledge gaps surrounding the medical management of this unique population and may guide both clinical care and further research. We explored potential factors leading the caring physicians to prescribe postoperative b-B. However, further efforts should aim at identifying objective criteria to guide postoperative therapy and anticipate the patients who may benefit from this treatment strategy.

Conclusion

Over the last decade, there has been a growing interest in diastolic function assessment and support in adult and pediatric cardiology. Besides the positive effect of propranolol on the occurrence of cyanotic spells, a pivotal role in reducing mortality and morbidity by protecting the chronically failing myocardium against hyperadrenegy (neurohormonal model of heart failure), and likely on cardiomyocyte division and proliferation, the role of beta-blockade on diastolic function in the early postoperative period following late surgical ToF repair stimulates renewed attention.

Declarations

Ethical approval

This study was conducted in accordance with the ethical standards of the Declaration of Helsinki. Ethical approval was obtained from the Commission cantonale d’éthique de la recherche sur l’être humain (CER-VD) in Lausanne, Switzerland (ID number 2019–01701). The consent for study inclusion was waived.

Competing interests

The authors declare no competing interests.
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://​creativecommons.​org/​licenses/​by/​4.​0/​.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Unsere Produktempfehlungen

e.Med Interdisziplinär

Kombi-Abonnement

Für Ihren Erfolg in Klinik und Praxis - Die beste Hilfe in Ihrem Arbeitsalltag

Mit e.Med Interdisziplinär erhalten Sie Zugang zu allen CME-Fortbildungen und Fachzeitschriften auf SpringerMedizin.de.

e.Med Pädiatrie

Kombi-Abonnement

Mit e.Med Pädiatrie erhalten Sie Zugang zu CME-Fortbildungen des Fachgebietes Pädiatrie, den Premium-Inhalten der pädiatrischen Fachzeitschriften, inklusive einer gedruckten Pädiatrie-Zeitschrift Ihrer Wahl.

Anhänge

Supplementary Information

Below is the link to the electronic supplementary material.
Literatur
1.
Zurück zum Zitat Schaffner D, Maitre G, Lava SAG, Boegli Y, Dolci M, Pfister R et al (2022) Outcome of humanitarian patients with late complete repair of tetralogy of Fallot: a 13-year long single-center experience. Int J Cardiol Congenit Heart Dis 10:100414CrossRef Schaffner D, Maitre G, Lava SAG, Boegli Y, Dolci M, Pfister R et al (2022) Outcome of humanitarian patients with late complete repair of tetralogy of Fallot: a 13-year long single-center experience. Int J Cardiol Congenit Heart Dis 10:100414CrossRef
2.
Zurück zum Zitat Bove T, Vandekerckhove K, Bouchez S, Wouters P, Somers P, Van Nooten G (2014) Role of myocardial hypertrophy on acute and chronic right ventricular performance in relation to chronic volume overload in a porcine model: relevance for the surgical management of tetralogy of Fallot. J Thorac Cardiovasc Surg 147(6):1956–1965CrossRefPubMed Bove T, Vandekerckhove K, Bouchez S, Wouters P, Somers P, Van Nooten G (2014) Role of myocardial hypertrophy on acute and chronic right ventricular performance in relation to chronic volume overload in a porcine model: relevance for the surgical management of tetralogy of Fallot. J Thorac Cardiovasc Surg 147(6):1956–1965CrossRefPubMed
3.
Zurück zum Zitat Munkhammar P, Cullen S, Jögi P, de Leval M, Elliott M, Norgård G (1998) Early age at repair prevents restrictive right ventricular (RV) physiology after surgery for tetralogy of Fallot (TOF). J Am Coll Cardiol 32(4):1083–1087CrossRefPubMed Munkhammar P, Cullen S, Jögi P, de Leval M, Elliott M, Norgård G (1998) Early age at repair prevents restrictive right ventricular (RV) physiology after surgery for tetralogy of Fallot (TOF). J Am Coll Cardiol 32(4):1083–1087CrossRefPubMed
4.
Zurück zum Zitat Cullen S, Shore D, Redington A (1995) Characterization of right ventricular diastolic performance after complete repair of tetralogy of Fallot. Restrictive physiology predicts slow postoperative recovery. Circulation 91(6):1782–9CrossRefPubMed Cullen S, Shore D, Redington A (1995) Characterization of right ventricular diastolic performance after complete repair of tetralogy of Fallot. Restrictive physiology predicts slow postoperative recovery. Circulation 91(6):1782–9CrossRefPubMed
5.
Zurück zum Zitat Sachdev MS, Bhagyavathy A, Varghese R, Coelho R, Kumar RS (2006) Right ventricular diastolic function after repair of tetralogy of Fallot. Pediatr Cardiol 27(2):250–255CrossRefPubMed Sachdev MS, Bhagyavathy A, Varghese R, Coelho R, Kumar RS (2006) Right ventricular diastolic function after repair of tetralogy of Fallot. Pediatr Cardiol 27(2):250–255CrossRefPubMed
6.
Zurück zum Zitat Federmann M, Hess OM (1994) Differentiation between systolic and diastolic dysfunction. Eur Heart J 15(Suppl D):2–6CrossRefPubMed Federmann M, Hess OM (1994) Differentiation between systolic and diastolic dysfunction. Eur Heart J 15(Suppl D):2–6CrossRefPubMed
7.
8.
Zurück zum Zitat Man in ’t Veld AJ. (1987) Effect of beta blockers on vascular resistance in systemic hypertension. Am J Cardiol 59(13):21F-F25CrossRefPubMed Man in ’t Veld AJ. (1987) Effect of beta blockers on vascular resistance in systemic hypertension. Am J Cardiol 59(13):21F-F25CrossRefPubMed
9.
Zurück zum Zitat Man in’t Veld AJ, Van den Meiracker AH, Schalekamp MA (1988) Do beta-blockers really increase peripheral vascular resistance? Review of the literature and new observations under basal conditions. Am J Hypertens 1(1):91–6CrossRefPubMed Man in’t Veld AJ, Van den Meiracker AH, Schalekamp MA (1988) Do beta-blockers really increase peripheral vascular resistance? Review of the literature and new observations under basal conditions. Am J Hypertens 1(1):91–6CrossRefPubMed
10.
Zurück zum Zitat Eriksson BO, Thoren C, Zetterqvist P (1969) Long-term treatment with propranolol in selected cases of Fallot’s tetralogy. Br Heart J 31(1):37–44CrossRefPubMedPubMedCentral Eriksson BO, Thoren C, Zetterqvist P (1969) Long-term treatment with propranolol in selected cases of Fallot’s tetralogy. Br Heart J 31(1):37–44CrossRefPubMedPubMedCentral
12.
Zurück zum Zitat Shah PM, Kidd L (1967) Circulatory effects of propranolol in children with Fallot’s tetralogy. Observations with isoproterenol infusion, exercise and crying. Am J Cardiol 19(5):653–7CrossRefPubMed Shah PM, Kidd L (1967) Circulatory effects of propranolol in children with Fallot’s tetralogy. Observations with isoproterenol infusion, exercise and crying. Am J Cardiol 19(5):653–7CrossRefPubMed
13.
Zurück zum Zitat Fanous E, Mogyorosy G (2017) Does the prophylactic and therapeutic use of beta-blockers in preoperative patients with tetralogy of Fallot significantly prevent and treat the occurrence of cyanotic spells? Interact Cardiovasc Thorac Surg 25(4):647–650CrossRefPubMed Fanous E, Mogyorosy G (2017) Does the prophylactic and therapeutic use of beta-blockers in preoperative patients with tetralogy of Fallot significantly prevent and treat the occurrence of cyanotic spells? Interact Cardiovasc Thorac Surg 25(4):647–650CrossRefPubMed
14.
Zurück zum Zitat Cumming GR, Carr W (1967) Hemodynamic effects of propranolol in patients with Fallot’s tetralogy. Am Heart J 74(1):29–36CrossRefPubMed Cumming GR, Carr W (1967) Hemodynamic effects of propranolol in patients with Fallot’s tetralogy. Am Heart J 74(1):29–36CrossRefPubMed
15.
Zurück zum Zitat Yutzey KE (2020) Cytokinesis, beta-blockers, and congenital heart disease. N Engl J Med 382(3):291–293CrossRefPubMed Yutzey KE (2020) Cytokinesis, beta-blockers, and congenital heart disease. N Engl J Med 382(3):291–293CrossRefPubMed
17.
Zurück zum Zitat El Khoudary SR, Fabio A, Yester JW, Steinhauser ML, Christopher AB, Gyngard F et al (2021) Design and rationale of a clinical trial to increase cardiomyocyte division in infants with tetralogy of Fallot. Int J Cardiol 339:36–42CrossRefPubMedPubMedCentral El Khoudary SR, Fabio A, Yester JW, Steinhauser ML, Christopher AB, Gyngard F et al (2021) Design and rationale of a clinical trial to increase cardiomyocyte division in infants with tetralogy of Fallot. Int J Cardiol 339:36–42CrossRefPubMedPubMedCentral
18.
Zurück zum Zitat Norozi K, Bahlmann J, Raab B, Alpers V, Arnhold JO, Kuehne T et al (2007) A prospective, randomized, double-blind, placebo controlled trial of beta-blockade in patients who have undergone surgical correction of tetralogy of Fallot. Cardiol Young 17(4):372–379CrossRefPubMed Norozi K, Bahlmann J, Raab B, Alpers V, Arnhold JO, Kuehne T et al (2007) A prospective, randomized, double-blind, placebo controlled trial of beta-blockade in patients who have undergone surgical correction of tetralogy of Fallot. Cardiol Young 17(4):372–379CrossRefPubMed
19.
Zurück zum Zitat Schweintzger S, Kurath-Koller S, Burmas A, Grangl G, Fandl A, Noessler N et al (2022) Normal echocardiographic reference values of the right ventricular to left ventricular endsystolic diameter ratio and the left ventricular endsystolic eccentricity index in healthy children and in children with pulmonary hypertension. Front Cardiovasc Med 9:950765CrossRefPubMedPubMedCentral Schweintzger S, Kurath-Koller S, Burmas A, Grangl G, Fandl A, Noessler N et al (2022) Normal echocardiographic reference values of the right ventricular to left ventricular endsystolic diameter ratio and the left ventricular endsystolic eccentricity index in healthy children and in children with pulmonary hypertension. Front Cardiovasc Med 9:950765CrossRefPubMedPubMedCentral
20.
Zurück zum Zitat Gaies MG, Gurney JG, Yen AH, Napoli ML, Gajarski RJ, Ohye RG et al (2010) Vasoactive-inotropic score as a predictor of morbidity and mortality in infants after cardiopulmonary bypass. Pediatr Crit Care Med 11(2):234–238CrossRefPubMed Gaies MG, Gurney JG, Yen AH, Napoli ML, Gajarski RJ, Ohye RG et al (2010) Vasoactive-inotropic score as a predictor of morbidity and mortality in infants after cardiopulmonary bypass. Pediatr Crit Care Med 11(2):234–238CrossRefPubMed
21.
Zurück zum Zitat Amiet V, Perez MH, Longchamp D, Boulos Ksontini T, Natterer J, Plaza Wuthrich S et al (2018) Use of levosimendan in postoperative setting after surgical repair of congenital heart disease in children. Pediatr Cardiol 39(1):19–25CrossRefPubMed Amiet V, Perez MH, Longchamp D, Boulos Ksontini T, Natterer J, Plaza Wuthrich S et al (2018) Use of levosimendan in postoperative setting after surgical repair of congenital heart disease in children. Pediatr Cardiol 39(1):19–25CrossRefPubMed
22.
Zurück zum Zitat Hoffman TM, Wernovsky G, Atz AM, Bailey JM, Akbary A, Kocsis JF et al (2002) Prophylactic intravenous use of milrinone after cardiac operation in pediatrics (PRIMACORP) study. Prophylactic intravenous use of milrinone after cardiac operation in pediatrics. Am Heart J 143(1):15–21CrossRefPubMed Hoffman TM, Wernovsky G, Atz AM, Bailey JM, Akbary A, Kocsis JF et al (2002) Prophylactic intravenous use of milrinone after cardiac operation in pediatrics (PRIMACORP) study. Prophylactic intravenous use of milrinone after cardiac operation in pediatrics. Am Heart J 143(1):15–21CrossRefPubMed
23.
Zurück zum Zitat Ulate KP, Yanay O, Jeffries H, Baden H, Di Gennaro JL, Zimmerman J (2017) An elevated low cardiac output syndrome score is associated with morbidity in infants after congenital heart surgery. Pediatr Crit Care Med 18(1):26–33CrossRefPubMed Ulate KP, Yanay O, Jeffries H, Baden H, Di Gennaro JL, Zimmerman J (2017) An elevated low cardiac output syndrome score is associated with morbidity in infants after congenital heart surgery. Pediatr Crit Care Med 18(1):26–33CrossRefPubMed
24.
Zurück zum Zitat Hummel J, Rucker G, Stiller B (2017) Prophylactic levosimendan for the prevention of low cardiac output syndrome and mortality in paediatric patients undergoing surgery for congenital heart disease. Cochrane Database Syst Rev 3(3):CD011312PubMed Hummel J, Rucker G, Stiller B (2017) Prophylactic levosimendan for the prevention of low cardiac output syndrome and mortality in paediatric patients undergoing surgery for congenital heart disease. Cochrane Database Syst Rev 3(3):CD011312PubMed
25.
Zurück zum Zitat Mignot M, Huguet H, Cambonie G, Guillaumont S, Vincenti M, Blanc J et al (2023) Risk factors for early occurrence of malnutrition in infants with severe congenital heart disease. Eur J Pediatr 182(3):1261–1269CrossRefPubMed Mignot M, Huguet H, Cambonie G, Guillaumont S, Vincenti M, Blanc J et al (2023) Risk factors for early occurrence of malnutrition in infants with severe congenital heart disease. Eur J Pediatr 182(3):1261–1269CrossRefPubMed
26.
Zurück zum Zitat Villarreal EG, Farias JS, Tweddell JS, Loomba RS, Flores S (2022) Beta-blocker use after complete repair of tetralogy of Fallot: an analysis of a national database. Cardiol Young 32(4):584–588CrossRefPubMed Villarreal EG, Farias JS, Tweddell JS, Loomba RS, Flores S (2022) Beta-blocker use after complete repair of tetralogy of Fallot: an analysis of a national database. Cardiol Young 32(4):584–588CrossRefPubMed
27.
28.
Zurück zum Zitat Hosseinpour AR, van Steenberghe M, Bernath MA, Di Bernardo S, Perez MH, Longchamp D et al (2017) Improvement in perioperative care in pediatric cardiac surgery by shifting the primary focus of treatment from cardiac output to perfusion pressure: are beta stimulants still needed? Congenit Heart Dis 12(5):570–577CrossRefPubMed Hosseinpour AR, van Steenberghe M, Bernath MA, Di Bernardo S, Perez MH, Longchamp D et al (2017) Improvement in perioperative care in pediatric cardiac surgery by shifting the primary focus of treatment from cardiac output to perfusion pressure: are beta stimulants still needed? Congenit Heart Dis 12(5):570–577CrossRefPubMed
30.
Zurück zum Zitat van Genuchten WJ, Helbing WA, Ten Harkel ADJ, Fejzic Z, Md IMK, Slieker MG et al (2023) Exercise capacity in a cohort of children with congenital heart disease. Eur J Pediatr 182(1):295–306CrossRefPubMed van Genuchten WJ, Helbing WA, Ten Harkel ADJ, Fejzic Z, Md IMK, Slieker MG et al (2023) Exercise capacity in a cohort of children with congenital heart disease. Eur J Pediatr 182(1):295–306CrossRefPubMed
31.
Zurück zum Zitat Heinisch PP, Guarino L, Hutter D, Bartkevics M, Erdoes G, Eberle B et al (2019) Late correction of tetralogy of Fallot in children. Swiss Med Wkly 149:w20096PubMed Heinisch PP, Guarino L, Hutter D, Bartkevics M, Erdoes G, Eberle B et al (2019) Late correction of tetralogy of Fallot in children. Swiss Med Wkly 149:w20096PubMed
Metadaten
Titel
Early postoperative beta-blockers are associated with improved cardiac output after late complete repair of tetralogy of Fallot: a retrospective cohort study
verfasst von
Guillaume Maitre
Damien Schaffner
Sebastiano A. G. Lava
Marie-Hélène Perez
Stefano Di Bernardo
Publikationsdatum
09.05.2024
Verlag
Springer Berlin Heidelberg
Erschienen in
European Journal of Pediatrics
Print ISSN: 0340-6199
Elektronische ISSN: 1432-1076
DOI
https://doi.org/10.1007/s00431-024-05597-1

Alter der Mutter beeinflusst Risiko für kongenitale Anomalie

28.05.2024 Kinder- und Jugendgynäkologie Nachrichten

Welchen Einfluss das Alter ihrer Mutter auf das Risiko hat, dass Kinder mit nicht chromosomal bedingter Malformation zur Welt kommen, hat eine ungarische Studie untersucht. Sie zeigt: Nicht nur fortgeschrittenes Alter ist riskant.

Begünstigt Bettruhe der Mutter doch das fetale Wachstum?

Ob ungeborene Kinder, die kleiner als die meisten Gleichaltrigen sind, schneller wachsen, wenn die Mutter sich mehr ausruht, wird diskutiert. Die Ergebnisse einer US-Studie sprechen dafür.

Bei Amblyopie früher abkleben als bisher empfohlen?

22.05.2024 Fehlsichtigkeit Nachrichten

Bei Amblyopie ist das frühzeitige Abkleben des kontralateralen Auges in den meisten Fällen wohl effektiver als der Therapiestandard mit zunächst mehrmonatigem Brilletragen.

„Übersichtlicher Wegweiser“: Lauterbachs umstrittener Klinik-Atlas ist online

17.05.2024 Klinik aktuell Nachrichten

Sie sei „ethisch geboten“, meint Gesundheitsminister Karl Lauterbach: mehr Transparenz über die Qualität von Klinikbehandlungen. Um sie abzubilden, lässt er gegen den Widerstand vieler Länder einen virtuellen Klinik-Atlas freischalten.

Update Pädiatrie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.