Skip to main content
Erschienen in: Virology Journal 1/2023

Open Access 01.12.2023 | Research

Characterisation of human astrovirus in a diarrhoea outbreak using nanopore and Sanger sequencing protocols

verfasst von: Jinhui Li, Lang Yang, Kaiying Wang, Zhiyong Gao, Peihan Li, Yanfeng Lin, Leili Jia, Quanyi Wang, Hongbin Song, Peng Li

Erschienen in: Virology Journal | Ausgabe 1/2023

Abstract

Human astroviruses (HAstV) are etiologic agents of acute gastroenteritis that most often afflict young children and elderly adults. Most studies of HAstV have focused on epidemiology. In this study, we collected 10 stool samples from a diarrhea outbreak from a diarrhea sentinel surveillance hospital in Beijing. Samples were evaluated immediately using parallel multiplex RT-qPCR and nanopore sequencing, and were then amplified by designed primers and Sanger sequencing to obtain whole genome sequences. Six isolates were categorized as HAstV-5 and subjected to whole genome analysis to characterize their genetic variation and evolution. Full genome analysis revealed low genetic variation (99.38–100% identity) among isolates. Phylogenetic analysis showed that all isolates were closely related to domestic strains Yu/1-CHN and 2013/Fuzhou/85. The recombination breakpoint of the six isolates was located at 2741 bp in the overlap region of ORF1a and ORF1b, similar to those of Yu/1-CHN and 2013/Fuzhou/85. Overall, our study highlights the combined use of RT-qPCR and sequencing as an important tool in rapid diagnosis and acquisition of whole genome sequences of HAstV.
Begleitmaterial
Hinweise

Supplementary Information

The online version contains supplementary material available at https://​doi.​org/​10.​1186/​s12985-023-02224-7.
Jinhui Li, Lang Yang, Kaiying Wang and Zhiyong Gao contributed equally to this work.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Introduction

Human astroviruses (HAstV) are small positive-sense single-stranded RNA viruses. Since their discovery in 1975, they have been recognized among the most prevalent pathogens causing acute infantile gastroenteritis worldwide [1]. Symptoms and signs of HAstV infections last 1 to 4 days, and feature watery diarrhea that can be less commonly accompanied by fever, headaches, abdominal pain, and anorexia. However, many infections in healthy children and adults tend to be asymptomatic [2, 3]. Notably, HAstV, especially HAstV-4 and HAstV-8, may cause extra-gastrointestinal symptoms in immunocompetent individuals. However, as there are currently no diagnostic tools capable of detecting all 16 known HAstV species, their prevalence is almost always underestimated [4]. Improved molecular techniques for detection, diagnosis, and surveillance are essential to establish the clinical importance of HAstV and to determine their prevalence more accurately [5].
The HAstV genome has a length of 6.2–7.9 kb and contains three open reading frames (ORFs): ORF1a, ORF1b and ORF2. ORF1a and ORF1b encode nonstructural proteins involved in RNA transcription and replication, while ORF2 encodes structural proteins and is commonly used for genotyping [6]. A 348-bp segment located between nucleotides 258 and 606 of full-length ORF2 has been used frequently for genotyping. Eight serotypes of HAstV have been identified, including recently discovered novel HAstV-MLB and HAstV-VA strains; however, HAstV-1 remains the most prevalent strain worldwide [79]. As viruses with RNA genomes, nucleotide mutations and recombination events are, among other factors, important in their genome evolution [10]. Recombination frequency depends on the degree of similarity between the involved sequences, length of viral genome, and the presence of recombination hot spots [11].
Recent epidemiologic data on HAstV-induced gastroenteritis in China are limited. Most published studies have focused primarily on HAstV infections in children, especially those under 5 years of age [12]. In most studies, RT-qPCR was used for nucleotide sequence amplification to identify genotypes HAstV1-8, while whole genome sequencing was used less commonly.
In this study, we combined quantitative RT-PCR (RT-qPCR) with MinION and Sanger sequencing for diagnosis and characterization of HAstV in a diarrhea outbreak to enable the discovery of novel strains and to improve our knowledge of HAstV circulation.

Materials and methods

A total of 10 fecal samples were collected during an acute gastroenteritis outbreak in March 2019 in a diarrhea sentinel monitoring hospital in Beijing. Fecal samples (0.1 g for solid or 100 μl for liquid) were suspended in 1mL phosphate buffered saline (PBS) to prepare an approximately 10% solution. This solution was vortexed at least 3 times, then allowed to stand for 10 min, and then centrifuged at 8,000 ×g for 5 min.
The Viral RNA was extracted from 200 μL to 10% fecal suspension of each sample with the QIAamp® MinElute Virus Spin Kit (QIAGEN, 57,704) following the manufacturer’s instruction. RT-qPCR specific assays were performed using a 24-diarrheal pathogen nucleic acid detection kit (A + B pre-made plate/fluorescent PCR) (BioGerm, YZ-FX-901) according to the manufacturer’s instruction on a Stratagene Mx3000P (Thermofischer, Waltham, MA, USA) and a CFX96 Touch™ Real-Time PCR Detection System (Bio-Rad, Hercules, CA, USA). The kit could screen 24-diarrheal pathogen including norovirus I and II, rotavirus A, rotavirus B, rotavirus C, enteric adenovirus, human astrovirus, Sapporo virus, Campylobacter, Vibrio parahaemolyticus, Listeria monocytogenes, Aeromonas hydrophila, Vibrio cholerae, Bacillus cereus, Yersinia pseudotuberculosis, Salmonella, Escherichia coli, Campylobacter jejuni, Vibrio fluvialis, Staphylococcus aureus, Vibrio mimicus, Yersinia enterocolitica, Shigella and Plesiomonas shigelloides. All 10 samples were screened for the above 24 pathogens by RT-qPCR.
Extracted RNA was subjected to the synthesis of cDNA using NEBNext Ultra II RNA First Strand Synthesis Module (New England Biolabs, USA) and NEBNext Ultra II Non-Directional RNA Second Strand Synthesis Module (New England Biolabs, USA). cDNA aliquots (10 μL) of 10 samples were mixed and enriched with AMPure XP beads (Beckman Coulter, A63881) by 1.8 × volume content. A 15-μL enriched cDNA was used for library preparation. For the MinION (Oxford Nanopore Technologies), we used the Rapid Barcoding Kit (SQK-RBK004) for library preparation and R9.4.1 flow cell (FLO-MIN106) for sequencing according to the manufacturer’s protocol. Sequencing run was maintained for 24 h with the fast base calling mode. Adapters were trimmed and reads with quality scores below 8 were filtered using MinKNOW (v23.04.6).
Based on the results of RT-qPCR and nanopore sequencing, the full length of the HAstV genome of six positive samples needed to be further amplified and subjected to Sanger sequencing. cDNA was synthesized using FastKing RT kit (Tiangen, KR116) following the manufacturer’s instructions, and was then amplified by primers of AstVp1 ~ AstVp12 and random primer set of TX30SXN/DM4 with the 2×Taq Plus PCR Mix (Tiangen, KT205) [13, 14]. The PCR conditions were set as follows: 94℃ held for 3 min, following by 35 cycles of 94℃ for 30s, 40℃ for 30s, 72℃ for 1 min, and final extension at 72℃ for 7 min.
For regions of HAstV genomes that were not obtained by whole genome and nanopore sequencing, we redesigned 4 pairs of primers to close the gap (Table 1). All PCR products were subjected to Sanger sequencing (Shenggong, Shanghai, China).
Table 1
Primers used to confirm the isolates sequence
Primer name
Objective
Sequence (5′ to 3′)
AstVp1
To amplify the full length of the HAstV genome
CCAARAGGGGGGTGGYGATTGGC
AstVp2
TYCCATTRRCRTCACGGATYTC
AstVp3
GMACRACCACGTCATTRTTTGY
AstVp4
TCAAATTCYACATCRTCACCAAC
AstVp5
TGGYTAYCCTGAYTATGATGATG
AstVp6
YACTATYTGCCGRATRTCAGAAT
AstVp7
GAAKCAYATGGDTGGGCACCAT
AstVp8
TGACAATKTTACGGACACGTTG
AstVp9
GACCAAAGAAGTGATGGCTAGC
AstVp10
TAGGYTGRTTCATYTGKGTRAAYT
AstVp11
GYTAYCARGATGCHYTRTCYAAT
AstVp12
CTGATTAAATCAATTTTAAATG
Ast1F
To close the gap of nanopore sequencing
TTGGAGAAAGGTCTGGATCG
Ast1R
GAAGGGGTTGGTACGGATTT
Ast2F
GAGCCAGATACGTGGCCTTA
Ast2R
GTCGTTGCCAGAAAAGAAGC
Ast3F
TTGGAGAAAGGTCTGGATCG
Ast3R
GTCTCTCATGGTCCGGTTGT
Ast4F
ACCAGGATGCGCTGTCTAAT
Ast4R
GGCTGACCCACAGTGAGAAT
We used Canu (v1.6) for nanopore sequencing genome assembly [15]. De novo assembly of Sanger sequencing data was performed in DNAstar software [16]. Raw reads were remapped to the assembly using bwa (v0.7.12) and alignments were processed with SAMtools (v1.3) to obtain the consensus sequence [17, 18]. Amplicon sequences were used to fill the gaps depending on the overlapped regions with nanopore sequences. Represented strains of different HAstV genotypes were used for phylogenetic analysis. All sequences were aligned using MEGA (v7.0.21) [19]. Neighbor-joining trees were constructed using the Kimura two-parameter method, and reliability was assessed by bootstrapping with 1,000 resampling loops. Average Nucleotide Identities were calculated using the OrthoANIu tool [20]. SimPlot was used to visualize the relationships between the recombinant and its possible parents, with a window size of 200 nucleotides in length (nt) and a step size of 20 nt in the full-length HAstV genomes.

Results and discussion

The outbreak occurred in March 2019 in a training session in Beijing, China. Ten participants had unexplained diarrhea, and the duration of symptoms ranged from 1 to 3 days. A total of 10 (BJ01 to BJ10) fecal specimens were collected. We screened 10 samples for 24 enteric pathogens using multiplex RT-PCR, of which six (BJ01, BJ02, BJ04, BJ06, BJ08 and BJ09) were positive for HAstV while four samples were negative for all the 24 pathogens. Nanopore sequencing was performed on HSdtV-positive samples and two (BJ01 and BJ08) complete genome sequences were assembled, which generated 2421 and 592 reads, respectively. BLAST search against NCBI revealed that the outbreak strains belonged to serotype 5 and had the highest similarity with Yu/1-CHN(MG921619.1) [21]. BJ01 had a coverage of 99.89% and a depth of 117×, while BJ08 had a 100% coverage and a depth of 453×with Yu/1-CHN(MG921619.1) as the reference genome (Fig. 1C). To obtain the whole genome sequences of all HAstV-positive samples, 6 pairs of primers were used and the amplicons were sent for Sanger sequencing (Fig. 1B, Additional file 1: Fig. S1, S2). However, there were still some gaps that necessitated the design of specific primers to facilitate another round of amplification and Sanger sequencing (Additional file 1: Fig. S3). Finally, whole genomes of the six positive samples were obtained by combining nanopore sequencing and Sanger sequencing data (Fig. 1A).
Phylogenetic analysis was performed using all the 51 complete genomes of HAstV strains from the Genebank and the outbreak strains (Fig. 2). The tree showed that the six strains formed a distinct phylogenetic group and were closely related to domestic strains Yu/1-CHN(MG921619.1) and 2013/Fuzhou/85(MF684776.1). Phylogenetic trees of the three ORFs revealed similar relationships between the outbreak and other strains, while distances between the ORF1a and ORF1b segments of BJ04 and the other outbreak strains were longer than distances between the ORF2 segments.
Pairwise alignments revealed low-level nucleotide variations within the six strains. Whole genome sequence identities varied from 99.38 to 100%. All the six strains have acquired the 27-bp and 15-bp insertions in ORF1a compared with the early serotype 5 strains (Fig. 3A). Most variations of the outbreak strains were single nucleotide polymorphisms primarily located in ORF1a. A single-base insertion and a deletion were observed in BJ04 compared with other strains, resulting in eight amino acid changes in ORF1a (Fig. 3B).
Homologous comparison analysis using Simplot was performed to determine potential evolutionary origins. The BJ06 strain was used for comparison with 2013/Fuzhou/85 (MF684776.1), Yu/1-CHN (MG921619.1), DL030 (JQ403108.1) and Pune/063681/India (JF327666.1) (Fig. 4). ANI analysis showed that the recombination breakpoint of BJ06 was located at 2741 bp in the overlap region of ORF1a and ORF1b, which was the same recombination site of 2013/Fuzhou/85(MF684776.1) and Yu/1-CHN(MG921619.1). The distribution of ANI was consistent with homologous and phylogenetic analyses. The three ORFs of BJ06 were highly similar to those of 2013/Fuzhou/85 and Yu/1-CHN, with similarities of 89.09%, 97.22% and 95.58% to those of DL030.
HAstV have traditionally been regarded as uncommon causes of gastroenteritis, and are most often associated with mild disease, and may therefore be under-diagnosed. The detection rates of HAstV in acute gastroenteritis cases were previously reported at 3.0% in Guangzhou, 5.22% in Shanghai, 2.6% in Thailand, 2.8% in Russia and 5.0% in Germany, lower than the worldwide mean incidence of 11.0% [2227]. The low detection rate might be explained by differences in sample size, geographic location, and detection methods [28], all of which have confounded the obtainment of the whole genome of HAstV.
To facilitate definitive diagnosis and accurate tracing, we used real-time PCR and nanopore sequencing in parallel for rapid detection. Six samples were positive for HAstV while 4 samples yielded no enteric pathogens. These 4 cases were attributed to food intolerance. However, only two complete genomes were obtained directly from HAstV-positive samples. Designed primers and Sanger sequencing enabled the filling of gaps and facilitated detailed genomic analysis during the outbreak.
Homologous recombination is a vital force driving evolution and contributes substantially to the genetic diversity of HAstV. Our outbreak strains had almost identical genetic variations and were similar to 2013/Fuzhou/85 and Yu/1-CHN, indicating that the outbreak strains had been circulating in China. Phylogenetic analysis showed that HAstV-5 comprised two groups, and that domestic strains had multiple short fragment insertions compared with foreign strains. Previously reported recombination breakpoints were identified within an upstream site of the ORF1a/ORF1b overlap region, then were frequent within ORF2, and were also located within ORF1a and ORF1b [2933]. Our analysis reveals that the outbreak strains may have originated from recombination of DL030 and Pune/063681/India.
In summary, the parallel use of RT-PCR and sequencing enhances rapid diagnosis and the acquisition of whole genome sequences of HAstV. The whole genomes of the outbreak strains further demonstrate genetic diversity and recombination of HAstV-5. Nevertheless, long-term monitoring data are needed to determine the epidemiology of this circulating genotype. The combination of nanopore and Sanger sequencing unveiled genomic variation and recombination, and may provide crucial insights into the evolution of HAstV.

Declarations

The authors state that the study was reviewed and supervised by Center for Disease Control and Prevention of PLA. Verbal consents were obtained as samples were collected through normal surveillance and no personally identifiable data were include.
The samples used in this study are routine hospital procedures. We do not use patients’ personal information, so written consent is not required.

Competing interests

The authors declare no competing interests.
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://​creativecommons.​org/​licenses/​by/​4.​0/​. The Creative Commons Public Domain Dedication waiver (http://​creativecommons.​org/​publicdomain/​zero/​1.​0/​) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Anhänge

Electronic supplementary material

Below is the link to the electronic supplementary material.
Literatur
1.
Zurück zum Zitat Glass R, Noel J, Mitchell D, Herrmann J, Blacklow N, Pickering L et al. The changing epidemiology of astrovirus-associated gastroenteritis: a review. Viral Gastroenteritis. 1996;287–300. Glass R, Noel J, Mitchell D, Herrmann J, Blacklow N, Pickering L et al. The changing epidemiology of astrovirus-associated gastroenteritis: a review. Viral Gastroenteritis. 1996;287–300.
2.
Zurück zum Zitat Mitchell DK, Matson DO, Cubitt WD, Jackson LJ, Willcocks MM, Pickering LK et al. Prevalence of antibodies to astrovirus types 1 and 3 in children and adolescents in Norfolk, Virginia. The Pediatric Infectious Disease journal. 1999;18:249–54. Mitchell DK, Matson DO, Cubitt WD, Jackson LJ, Willcocks MM, Pickering LK et al. Prevalence of antibodies to astrovirus types 1 and 3 in children and adolescents in Norfolk, Virginia. The Pediatric Infectious Disease journal. 1999;18:249–54.
3.
Zurück zum Zitat LeBaron CW, Furutan NP, Lew JF, Allen JR, Gouvea V, Moe C, et al. Viral agents of gastroenteritis. Public health importance and outbreak management. MMWR Recommendations and Reports: Morbidity and Mortality Weekly Report Recommendations and Reports. 1990;39:1–24.PubMed LeBaron CW, Furutan NP, Lew JF, Allen JR, Gouvea V, Moe C, et al. Viral agents of gastroenteritis. Public health importance and outbreak management. MMWR Recommendations and Reports: Morbidity and Mortality Weekly Report Recommendations and Reports. 1990;39:1–24.PubMed
4.
Zurück zum Zitat Cortez V, Freiden P, Gu Z, Adderson E, Hayden R, Schultz-Cherry S. Persistent Infections with diverse co-circulating astroviruses in Pediatric Oncology patients, Memphis, Tennessee, USA. Emerg Infect Dis. 2017;23:288–90.CrossRefPubMedPubMedCentral Cortez V, Freiden P, Gu Z, Adderson E, Hayden R, Schultz-Cherry S. Persistent Infections with diverse co-circulating astroviruses in Pediatric Oncology patients, Memphis, Tennessee, USA. Emerg Infect Dis. 2017;23:288–90.CrossRefPubMedPubMedCentral
5.
Zurück zum Zitat Cortez V, Meliopoulos VA, Karlsson EA, Hargest V, Johnson C, Schultz-Cherry S. Astrovirus biology and pathogenesis. Annual Rev Virol. 2017;4:327–48.CrossRef Cortez V, Meliopoulos VA, Karlsson EA, Hargest V, Johnson C, Schultz-Cherry S. Astrovirus biology and pathogenesis. Annual Rev Virol. 2017;4:327–48.CrossRef
7.
Zurück zum Zitat Guix S, Caballero S, Villena C, Bartolomé R, Latorre C, Rabella N, et al. Molecular epidemiology of astrovirus Infection in Barcelona, Spain. J Clin Microbiol. 2002;40:133–9.CrossRefPubMedPubMedCentral Guix S, Caballero S, Villena C, Bartolomé R, Latorre C, Rabella N, et al. Molecular epidemiology of astrovirus Infection in Barcelona, Spain. J Clin Microbiol. 2002;40:133–9.CrossRefPubMedPubMedCentral
8.
Zurück zum Zitat Grazia SD, Martella V, Chironna M, Bonura F, Tummolo F, Calderaro A, et al. Nationwide surveillance study of human astrovirus Infections in an Italian paediatric population. Epidemiol Infect. 2013;141:524–8.CrossRefPubMed Grazia SD, Martella V, Chironna M, Bonura F, Tummolo F, Calderaro A, et al. Nationwide surveillance study of human astrovirus Infections in an Italian paediatric population. Epidemiol Infect. 2013;141:524–8.CrossRefPubMed
9.
Zurück zum Zitat Mendez-Toss M, Griffin DD, Calva J, Contreras JF, Puerto FI, Mota F, et al. Prevalence and Genetic Diversity of Human Astroviruses in Mexican Children with symptomatic and asymptomatic Infections. J Clin Microbiol. 2004;42:151.CrossRefPubMedPubMedCentral Mendez-Toss M, Griffin DD, Calva J, Contreras JF, Puerto FI, Mota F, et al. Prevalence and Genetic Diversity of Human Astroviruses in Mexican Children with symptomatic and asymptomatic Infections. J Clin Microbiol. 2004;42:151.CrossRefPubMedPubMedCentral
12.
Zurück zum Zitat Wu L, Teng Z, Lin Q, Liu J, Wu H, Kuang X, et al. Epidemiology and genetic characterization of classical human astrovirus Infection in Shanghai, 2015–2016. Front Microbiol. 2020;11:570541.CrossRefPubMedPubMedCentral Wu L, Teng Z, Lin Q, Liu J, Wu H, Kuang X, et al. Epidemiology and genetic characterization of classical human astrovirus Infection in Shanghai, 2015–2016. Front Microbiol. 2020;11:570541.CrossRefPubMedPubMedCentral
13.
Zurück zum Zitat Yang S, Ren Y, Deng L, Yang J, Xiong Y, Jing S, et al. Molecular epidemiology of Astrovirus Infection among hospitalized infants in Kunming City, China, 2013~2014. Bing Du Xue bao = Chinese Journal of Virology / [bian Ji Bing Du Xue bao Bian ji Wei Yuan Hui]. 2016;32:752–7. Yang S, Ren Y, Deng L, Yang J, Xiong Y, Jing S, et al. Molecular epidemiology of Astrovirus Infection among hospitalized infants in Kunming City, China, 2013~2014. Bing Du Xue bao = Chinese Journal of Virology / [bian Ji Bing Du Xue bao Bian ji Wei Yuan Hui]. 2016;32:752–7.
14.
Zurück zum Zitat Walter JE, Mitchell DK, Lourdes GM, Tamás B, Matson DO, Monroe SS et al. Molecular Epidemiology of Human Astrovirus Diarrhea among children from a Periurban Community of Mexico City. J Infect Dis. 2001;681–6. Walter JE, Mitchell DK, Lourdes GM, Tamás B, Matson DO, Monroe SS et al. Molecular Epidemiology of Human Astrovirus Diarrhea among children from a Periurban Community of Mexico City. J Infect Dis. 2001;681–6.
15.
Zurück zum Zitat Sergey K, Brian P, Walenz, Konstantin B et al. Canu: scalable and accurate long-read assembly via adaptive k-mer weighting and repeat separation. Genome Res. 2017. Sergey K, Brian P, Walenz, Konstantin B et al. Canu: scalable and accurate long-read assembly via adaptive k-mer weighting and repeat separation. Genome Res. 2017.
16.
Zurück zum Zitat Li D, Liu CM, Luo R, Kunihiko S, Tak-Wah L. MEGAHIT: an ultra-fast single-node solution for large and complex metagenomics assembly via succinct de bruijn graph. Bioinformatics. 2015;31:1674–6.CrossRefPubMed Li D, Liu CM, Luo R, Kunihiko S, Tak-Wah L. MEGAHIT: an ultra-fast single-node solution for large and complex metagenomics assembly via succinct de bruijn graph. Bioinformatics. 2015;31:1674–6.CrossRefPubMed
17.
Zurück zum Zitat Li H, Richard D. Fast and accurate short read alignment with Burrows–Wheeler transform. Bioinformatics. 2010;14. Li H, Richard D. Fast and accurate short read alignment with Burrows–Wheeler transform. Bioinformatics. 2010;14.
18.
Zurück zum Zitat Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, et al. The sequence Alignment/Map format and SAMtools. Bioinformatics. 2009;25:2078–9.CrossRefPubMedPubMedCentral Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, et al. The sequence Alignment/Map format and SAMtools. Bioinformatics. 2009;25:2078–9.CrossRefPubMedPubMedCentral
19.
Zurück zum Zitat Sudhir K, Glen S, Koichiro T. MEGA7: Molecular Evolutionary Genetics Analysis Version 7.0 for bigger datasets. Volume 1870. Molecular Biology & Evolution; 2016. Sudhir K, Glen S, Koichiro T. MEGA7: Molecular Evolutionary Genetics Analysis Version 7.0 for bigger datasets. Volume 1870. Molecular Biology & Evolution; 2016.
20.
Zurück zum Zitat Yoon S-H, Ha S, Lim J, Kwon S, Chun J. A large-scale evaluation of algorithms to calculate average nucleotide identity. Antonie Van Leeuwenhoek. 2017;110:1281–6.CrossRefPubMed Yoon S-H, Ha S, Lim J, Kwon S, Chun J. A large-scale evaluation of algorithms to calculate average nucleotide identity. Antonie Van Leeuwenhoek. 2017;110:1281–6.CrossRefPubMed
21.
Zurück zum Zitat Yu JM, Wang ZH, Liu N, Zhang Q, Dong YJ, Duan ZJ. Complete genome of a novel recombinant human astrovirus and its quasispecies in patients following hematopoietic stem cell transplantation. Virus Research: An International Journal of Molecular and Cellular Virology. 2020;288. Yu JM, Wang ZH, Liu N, Zhang Q, Dong YJ, Duan ZJ. Complete genome of a novel recombinant human astrovirus and its quasispecies in patients following hematopoietic stem cell transplantation. Virus Research: An International Journal of Molecular and Cellular Virology. 2020;288.
23.
Zurück zum Zitat Luo X, Deng J, Mu X, Yu N, Che X. Detection and characterization of human astrovirus and sapovirus in outpatients with acute gastroenteritis in Guangzhou, China. BMC Gastroenterol. 2021;21:1–8.CrossRef Luo X, Deng J, Mu X, Yu N, Che X. Detection and characterization of human astrovirus and sapovirus in outpatients with acute gastroenteritis in Guangzhou, China. BMC Gastroenterol. 2021;21:1–8.CrossRef
24.
Zurück zum Zitat Kumthip K, Khamrin P, Ushijima H, Maneekarn N. Molecular epidemiology of classic, MLB and VA astroviruses isolated from < 5 year-old children with gastroenteritis in Thailand, 2011–2016. Infection, Genetics and Evolution. 2018;65:373–9. Kumthip K, Khamrin P, Ushijima H, Maneekarn N. Molecular epidemiology of classic, MLB and VA astroviruses isolated from < 5 year-old children with gastroenteritis in Thailand, 2011–2016. Infection, Genetics and Evolution. 2018;65:373–9.
25.
Zurück zum Zitat Zhirakovskaia E, Tikunov A, Tymentsev A, Sokolov S, Sedelnikova D, Tikunova N. Changing pattern of prevalence and genetic diversity of rotavirus, norovirus, astrovirus, and bocavirus associated with childhood diarrhea in Asian Russia, 2009–2012. Infection, Genetics and Evolution. 2019;67:167–82. Zhirakovskaia E, Tikunov A, Tymentsev A, Sokolov S, Sedelnikova D, Tikunova N. Changing pattern of prevalence and genetic diversity of rotavirus, norovirus, astrovirus, and bocavirus associated with childhood diarrhea in Asian Russia, 2009–2012. Infection, Genetics and Evolution. 2019;67:167–82.
26.
Zurück zum Zitat Jacobsen S, Höhne M, Marques AM, Beslmüller K, Bock C-T, Niendorf S. Co-circulation of classic and novel astrovirus strains in patients with acute gastroenteritis in Germany. J Infect. 2018;76:457–64.CrossRefPubMed Jacobsen S, Höhne M, Marques AM, Beslmüller K, Bock C-T, Niendorf S. Co-circulation of classic and novel astrovirus strains in patients with acute gastroenteritis in Germany. J Infect. 2018;76:457–64.CrossRefPubMed
27.
Zurück zum Zitat Lu L, Zhong H, Xu M, Su L, Cao L, Jia R, et al. Molecular and epidemiological characterization of human adenovirus and classic human astrovirus in children with acute diarrhea in Shanghai, 2017–2018. BMC Infect Dis. 2021;21:1–10.CrossRef Lu L, Zhong H, Xu M, Su L, Cao L, Jia R, et al. Molecular and epidemiological characterization of human adenovirus and classic human astrovirus in children with acute diarrhea in Shanghai, 2017–2018. BMC Infect Dis. 2021;21:1–10.CrossRef
28.
Zurück zum Zitat Bergallo M, Galliano I, Daprà V, Rassu M, Montanari P, Tovo P-A. Molecular detection of human astrovirus in children with gastroenteritis, Northern Italy. Pediatr Infect Dis J. 2018;37:738–42.CrossRefPubMed Bergallo M, Galliano I, Daprà V, Rassu M, Montanari P, Tovo P-A. Molecular detection of human astrovirus in children with gastroenteritis, Northern Italy. Pediatr Infect Dis J. 2018;37:738–42.CrossRefPubMed
29.
Zurück zum Zitat Babkin IV, Tikunov AY, Zhirakovskaia EV, Netesov SV, Tikunova NV. High evolutionary rate of human astrovirus. Infect Genet Evol. 2012;12:435–42.CrossRefPubMed Babkin IV, Tikunov AY, Zhirakovskaia EV, Netesov SV, Tikunova NV. High evolutionary rate of human astrovirus. Infect Genet Evol. 2012;12:435–42.CrossRefPubMed
30.
Zurück zum Zitat Martella V, Medici MC, Terio V, Catella C, Bozzo G, Tummolo F, et al. Lineage diversification and recombination in type-4 human astroviruses. Infect Genet Evol. 2013;20:330–5.CrossRefPubMed Martella V, Medici MC, Terio V, Catella C, Bozzo G, Tummolo F, et al. Lineage diversification and recombination in type-4 human astroviruses. Infect Genet Evol. 2013;20:330–5.CrossRefPubMed
31.
Zurück zum Zitat Colomba C, De Grazia S, Giammanco G, Saporito L, Scarlata F, Titone L, et al. Viral gastroenteritis in children hospitalised in Sicily, Italy. Eur J Clin Microbiol Infect Dis. 2006;25:570–5.CrossRefPubMed Colomba C, De Grazia S, Giammanco G, Saporito L, Scarlata F, Titone L, et al. Viral gastroenteritis in children hospitalised in Sicily, Italy. Eur J Clin Microbiol Infect Dis. 2006;25:570–5.CrossRefPubMed
32.
33.
Zurück zum Zitat Wolfaardt M, Kiulia NM, Mwenda JM, Taylor MB. Evidence of a recombinant wild-type human astrovirus strain from a Kenyan child with gastroenteritis. J Clin Microbiol. 2011;49:728–31.CrossRefPubMedPubMedCentral Wolfaardt M, Kiulia NM, Mwenda JM, Taylor MB. Evidence of a recombinant wild-type human astrovirus strain from a Kenyan child with gastroenteritis. J Clin Microbiol. 2011;49:728–31.CrossRefPubMedPubMedCentral
Metadaten
Titel
Characterisation of human astrovirus in a diarrhoea outbreak using nanopore and Sanger sequencing protocols
verfasst von
Jinhui Li
Lang Yang
Kaiying Wang
Zhiyong Gao
Peihan Li
Yanfeng Lin
Leili Jia
Quanyi Wang
Hongbin Song
Peng Li
Publikationsdatum
01.12.2023
Verlag
BioMed Central
Erschienen in
Virology Journal / Ausgabe 1/2023
Elektronische ISSN: 1743-422X
DOI
https://doi.org/10.1186/s12985-023-02224-7

Weitere Artikel der Ausgabe 1/2023

Virology Journal 1/2023 Zur Ausgabe

Leitlinien kompakt für die Innere Medizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

RAS-Blocker bei Hyperkaliämie möglichst nicht sofort absetzen

14.05.2024 Hyperkaliämie Nachrichten

Bei ausgeprägter Nierenfunktionsstörung steigen unter der Einnahme von Renin-Angiotensin-System(RAS)-Hemmstoffen nicht selten die Serumkaliumspiegel. Was in diesem Fall zu tun ist, erklärte Prof. Jürgen Floege beim diesjährigen Allgemeinmedizin-Update-Seminar.

Gestationsdiabetes: In der zweiten Schwangerschaft folgenreicher als in der ersten

13.05.2024 Gestationsdiabetes Nachrichten

Das Risiko, nach einem Gestationsdiabetes einen Typ-2-Diabetes zu entwickeln, hängt nicht nur von der Zahl, sondern auch von der Reihenfolge der betroffenen Schwangerschaften ab.

Labor, CT-Anthropometrie zeigen Risiko für Pankreaskrebs

13.05.2024 Pankreaskarzinom Nachrichten

Gerade bei aggressiven Malignomen wie dem duktalen Adenokarzinom des Pankreas könnte Früherkennung die Therapiechancen verbessern. Noch jedoch klafft hier eine Lücke. Ein Studienteam hat einen Weg gesucht, sie zu schließen.

Battle of Experts: Sport vs. Spritze bei Adipositas und Typ-2-Diabetes

11.05.2024 DDG-Jahrestagung 2024 Kongressbericht

Im Battle of Experts traten zwei Experten auf dem Diabeteskongress gegeneinander an: Die eine vertrat die Auffassung „Sport statt Spritze“ bei Adipositas und Typ-2-Diabetes, der andere forderte „Spritze statt Sport!“ Am Ende waren sie sich aber einig: Die Kombination aus beidem erzielt die besten Ergebnisse.

Update Innere Medizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.