Skip to main content

13.05.2024 | RESEARCH

Acacetin Attenuates Sepsis-induced Acute Lung Injury via NLRC3-NF-κB Pathway

verfasst von: Yingchou Xiao, Bo Zhang, Shiyuan Hou, Xing Shen, Xingan Wu, Rongrong Liu, Ying Luo

Erschienen in: Inflammation

Einloggen, um Zugang zu erhalten

Abstract

Acacetin, a flavonoid derived compound has been recognized for its diverse biological activities, such as anti-oxidative and anti-inflammatory effects. Acute lung injury (ALI) is a severe condition characterized by respiratory insufficiency and tissue damage, commonly triggered by pneumonia and severe sepsis. These conditions induce an inflammatory response via Toll-like receptor 4 (TLR4) signaling activation. This study explored acacetin's therapeutic potential against lipopolysaccharide (LPS) induced ALI in mice, focusing on its ability to modulate the NF-κB pathway via regulation of the Nod-like receptor family CARD domain containing 3 (NLRC3), a signal sensor that plays an important role in the regulation of inflammation and the maintenance of homeostasis. Our findings revealed that high-dose acacetin reduced the mortality rate of ALI mice, significantly ameliorated LPS-induced lung pathological changes, reduced lung edema, and decreased the expression of inflammatory mediators in lung tissues. This protective impact of acacetin appears to stem form its capacity to enhance NLRC3 expression, which, intern, can inhibit the activation of NF-κB and subsequently inhibit the production of inflammatory mediators. NLRC3 deficiency inhibits the protective effect of acacetin on ALI mice. Molecular docking also verified that acacetin tightly bound acacetin to NLRC3. Additionally, acacetin was found to influence macrophage recruitment dynamics via NLRC3, inhibiting the overactivation of NLRC3-NF-κB related pathways. Taken together, our results indicate that acacetin inhibited LPS-induced acute lung injury and macrophage overrecruitment to the lungs in mice by upregulating NLRC3.
Literatur
1.
Zurück zum Zitat Hughes, K.T., and M.B. Beasley. 2017. Pulmonary Manifestations of Acute Lung Injury: More Than Just Diffuse Alveolar Damage. Archives of Pathology and Laboratory Medicine 141 (7): 916–922.CrossRefPubMed Hughes, K.T., and M.B. Beasley. 2017. Pulmonary Manifestations of Acute Lung Injury: More Than Just Diffuse Alveolar Damage. Archives of Pathology and Laboratory Medicine 141 (7): 916–922.CrossRefPubMed
2.
Zurück zum Zitat Kumar, V. 2020. Pulmonary Innate Immune Response Determines the Outcome of Inflammation During Pneumonia and Sepsis-Associated Acute Lung Injury. Frontiers in Immunology 11: 1722.CrossRefPubMedPubMedCentral Kumar, V. 2020. Pulmonary Innate Immune Response Determines the Outcome of Inflammation During Pneumonia and Sepsis-Associated Acute Lung Injury. Frontiers in Immunology 11: 1722.CrossRefPubMedPubMedCentral
3.
Zurück zum Zitat Long, M.E., R.K. Mallampalli, and J.C. Horowitz. 2022. Pathogenesis of pneumonia and acute lung injury. Clinical Science (London, England) 136 (10): 747–769.CrossRef Long, M.E., R.K. Mallampalli, and J.C. Horowitz. 2022. Pathogenesis of pneumonia and acute lung injury. Clinical Science (London, England) 136 (10): 747–769.CrossRef
4.
Zurück zum Zitat Tang, J., L. Xu, Y. Zeng, et al. 2021. Effect of gut microbiota on LPS-induced acute lung injury by regulating the TLR4/NF-kB signaling pathway. International Immunopharmacology 91: 107272.CrossRefPubMed Tang, J., L. Xu, Y. Zeng, et al. 2021. Effect of gut microbiota on LPS-induced acute lung injury by regulating the TLR4/NF-kB signaling pathway. International Immunopharmacology 91: 107272.CrossRefPubMed
5.
Zurück zum Zitat Yuan-Yuan, Z., Z. Bo-Hua, S. Wei-Guo, et al. 2014. Research progress on biological activity of Robinia pseudoacacia (in Chinese) [j]. Chinese Journal of New Drugs 23 (09): 1053–1056+1080 Yuan-Yuan, Z., Z. Bo-Hua, S. Wei-Guo, et al. 2014. Research progress on biological activity of Robinia pseudoacacia (in Chinese) [j]. Chinese Journal of New Drugs 23 (09): 1053–1056+1080
6.
Zurück zum Zitat Cho, H.I., J.H. Park, H.S. Choi, et al. 2014. Protective mechanisms of acacetin against D-galactosamine and lipopolysaccharide-induced fulminant hepatic failure in mice. Journal of Natural Products 77 (11): 2497–2503.CrossRefPubMed Cho, H.I., J.H. Park, H.S. Choi, et al. 2014. Protective mechanisms of acacetin against D-galactosamine and lipopolysaccharide-induced fulminant hepatic failure in mice. Journal of Natural Products 77 (11): 2497–2503.CrossRefPubMed
7.
Zurück zum Zitat Chang, B., Z. Wang, H. Cheng, et al. 2024. Acacetin protects against sepsis-induced acute lung injury by facilitating M2 macrophage polarization via TRAF6/NF-κB/COX2 axis. Innate Immunity 30 (1): 11–20.CrossRefPubMed Chang, B., Z. Wang, H. Cheng, et al. 2024. Acacetin protects against sepsis-induced acute lung injury by facilitating M2 macrophage polarization via TRAF6/NF-κB/COX2 axis. Innate Immunity 30 (1): 11–20.CrossRefPubMed
8.
Zurück zum Zitat Wu, D., Y. Wand, H. Zhang, et al. 2018. Acacetin attenuates mice endotoxin-induced acute lung injury via augmentation of heme oxygenase-1 activity. Inflammopharmacology 26 (2): 635–643.CrossRefPubMed Wu, D., Y. Wand, H. Zhang, et al. 2018. Acacetin attenuates mice endotoxin-induced acute lung injury via augmentation of heme oxygenase-1 activity. Inflammopharmacology 26 (2): 635–643.CrossRefPubMed
9.
Zurück zum Zitat Sun, L.C., H.B. Zhang, C.D. Gu, et al. 2018. Protective effect of acacetin on sepsis-induced acute lung injury via its anti-inflammatory and antioxidative activity. Archives of Pharmacal Research 41 (12): 1199–1210.CrossRefPubMed Sun, L.C., H.B. Zhang, C.D. Gu, et al. 2018. Protective effect of acacetin on sepsis-induced acute lung injury via its anti-inflammatory and antioxidative activity. Archives of Pharmacal Research 41 (12): 1199–1210.CrossRefPubMed
10.
Zurück zum Zitat Velloso, F.J., M. Trombetta-Lima, V. Anschau, et al. 2019. NOD-like receptors: major players (and targets) in the interface between innate immunity and cancer. Bioscience Reports 39 (4):BSR20181709. https://doi.org/10.1042/BSR20181709. PMID: 30837326; PMCID: PMC6454022. Velloso, F.J., M. Trombetta-Lima, V. Anschau, et al. 2019. NOD-like receptors: major players (and targets) in the interface between innate immunity and cancer. Bioscience Reports 39 (4):BSR20181709. https://​doi.​org/​10.​1042/​BSR20181709. PMID: 30837326; PMCID: PMC6454022.
11.
Zurück zum Zitat Ye, Z., and J.P. Ting. 2008. NLR, the nucleotide-binding domain leucine-rich repeat containing gene family. Current Opinion in Immunology 20 (1): 3–9.CrossRefPubMed Ye, Z., and J.P. Ting. 2008. NLR, the nucleotide-binding domain leucine-rich repeat containing gene family. Current Opinion in Immunology 20 (1): 3–9.CrossRefPubMed
12.
Zurück zum Zitat Zhao, Y., and R. Li. 2023. Overview of the anti-inflammatory function of the innate immune sensor NLRC3. Molecular Immunology 153: 36–41.CrossRefPubMed Zhao, Y., and R. Li. 2023. Overview of the anti-inflammatory function of the innate immune sensor NLRC3. Molecular Immunology 153: 36–41.CrossRefPubMed
13.
Zurück zum Zitat Li, Z.T., H. Liu, and W.Q. Zhang. 2020. NLRC3 alleviates hypoxia/reoxygenation induced inflammation in RAW264.7 cells by inhibiting K63-linked ubiquitination of TRAF6. Hepatobiliary & Pancreat Diseases International 19 (5): 455–460.CrossRef Li, Z.T., H. Liu, and W.Q. Zhang. 2020. NLRC3 alleviates hypoxia/reoxygenation induced inflammation in RAW264.7 cells by inhibiting K63-linked ubiquitination of TRAF6. Hepatobiliary & Pancreat Diseases International 19 (5): 455–460.CrossRef
14.
Zurück zum Zitat Schneider, M., A.G. Zimmermann, R.A. Roberts, et al. 2012. The innate immune sensor NLRC3 attenuates Toll-like receptor signaling via modification of the signaling adaptor TRAF6 and transcription factor NF-κB. Nature Immunology 13 (9): 823–831.CrossRefPubMedPubMedCentral Schneider, M., A.G. Zimmermann, R.A. Roberts, et al. 2012. The innate immune sensor NLRC3 attenuates Toll-like receptor signaling via modification of the signaling adaptor TRAF6 and transcription factor NF-κB. Nature Immunology 13 (9): 823–831.CrossRefPubMedPubMedCentral
15.
Zurück zum Zitat Fu, Y., X. Zhan, Y. Wang, et al. 2019. NLRC3 expression in dendritic cells attenuates CD4(+) T cell response and autoimmunity. EMBO Journal 38 (16): e101397.CrossRefPubMedPubMedCentral Fu, Y., X. Zhan, Y. Wang, et al. 2019. NLRC3 expression in dendritic cells attenuates CD4(+) T cell response and autoimmunity. EMBO Journal 38 (16): e101397.CrossRefPubMedPubMedCentral
16.
Zurück zum Zitat Hu, S., X. Du, Y. Huang, et al. 2018. NLRC3 negatively regulates CD4+ T cells and impacts protective immunity during Mycobacterium tuberculosis infection. PLoS Pathogens 14 (8): e1007266.CrossRefPubMedPubMedCentral Hu, S., X. Du, Y. Huang, et al. 2018. NLRC3 negatively regulates CD4+ T cells and impacts protective immunity during Mycobacterium tuberculosis infection. PLoS Pathogens 14 (8): e1007266.CrossRefPubMedPubMedCentral
17.
Zurück zum Zitat Karki, R., R.K.S. Malireddi, Q. Zhu, et al. 2017. NLRC3 regulates cellular proliferation and apoptosis to attenuate the development of colorectal cancer. Cell Cycle 16 (13): 1243–1251.CrossRefPubMedPubMedCentral Karki, R., R.K.S. Malireddi, Q. Zhu, et al. 2017. NLRC3 regulates cellular proliferation and apoptosis to attenuate the development of colorectal cancer. Cell Cycle 16 (13): 1243–1251.CrossRefPubMedPubMedCentral
18.
Zurück zum Zitat Krishnan, R., R. Rajendran, Y.S. Jang, et al. 2022. NLRC3 attenuates antiviral immunity and activates inflammasome responses in primary grouper brain cells following nervous necrosis virus infection. Fish & Shellfish Immunology 127: 219–227.CrossRef Krishnan, R., R. Rajendran, Y.S. Jang, et al. 2022. NLRC3 attenuates antiviral immunity and activates inflammasome responses in primary grouper brain cells following nervous necrosis virus infection. Fish & Shellfish Immunology 127: 219–227.CrossRef
19.
Zurück zum Zitat Zha, L.H., J. Zhou, Y. Tan, et al. 2020. NLRC3 inhibits PDGF-induced PASMCs proliferation via PI3K-mTOR pathway. Journal of Cellular Physiology 235 (12): 9557–9567.CrossRefPubMed Zha, L.H., J. Zhou, Y. Tan, et al. 2020. NLRC3 inhibits PDGF-induced PASMCs proliferation via PI3K-mTOR pathway. Journal of Cellular Physiology 235 (12): 9557–9567.CrossRefPubMed
20.
Zurück zum Zitat Li, R., Y. Zhao, X. Zhang, et al. 2023. NLRC3 Participates in Inhibiting the Pulmonary Inflammatory Response of Sepsis-Induced Acute Lung Injury. Immunological Investigations 52 (5): 567–582.CrossRefPubMed Li, R., Y. Zhao, X. Zhang, et al. 2023. NLRC3 Participates in Inhibiting the Pulmonary Inflammatory Response of Sepsis-Induced Acute Lung Injury. Immunological Investigations 52 (5): 567–582.CrossRefPubMed
21.
Zurück zum Zitat Zhou, Z.H., B. Sun, K. Lin, et al. 2000. Prevention of rabbit acute lung injury by surfactant, inhaled nitric oxide, and pressure support ventilation. American Journal of Respiratory and Critical Care Medicine 161 (2 Pt 1): 581–588.CrossRefPubMed Zhou, Z.H., B. Sun, K. Lin, et al. 2000. Prevention of rabbit acute lung injury by surfactant, inhaled nitric oxide, and pressure support ventilation. American Journal of Respiratory and Critical Care Medicine 161 (2 Pt 1): 581–588.CrossRefPubMed
22.
Zurück zum Zitat Assouvie, A., L.P. Daley-Bauer, and G. Rousselet. 2018. Growing Murine Bone Marrow-Derived Macrophages. Methods in Molecular Biology 1784: 29–33.CrossRefPubMed Assouvie, A., L.P. Daley-Bauer, and G. Rousselet. 2018. Growing Murine Bone Marrow-Derived Macrophages. Methods in Molecular Biology 1784: 29–33.CrossRefPubMed
23.
Zurück zum Zitat Ye, H., Y. Zhou, P. Ma, et al. 2020. Analysis of the anti-inflammatory effect of the aptamer LA27 and its binding mechanism. International Journal of Biological Macromolecules 165 (Pt A): 308–313.CrossRefPubMed Ye, H., Y. Zhou, P. Ma, et al. 2020. Analysis of the anti-inflammatory effect of the aptamer LA27 and its binding mechanism. International Journal of Biological Macromolecules 165 (Pt A): 308–313.CrossRefPubMed
24.
Zurück zum Zitat Murray, J.F. 2011. Pulmonary edema: pathophysiology and diagnosis. International Journal of Tuberculosis Lung Disease 15 (2): 155–160. Murray, J.F. 2011. Pulmonary edema: pathophysiology and diagnosis. International Journal of Tuberculosis Lung Disease 15 (2): 155–160.
25.
Zurück zum Zitat Berghe, T.V., D. Demon, P. Bogaert, et al. 2014. Simultaneous targeting of IL-1 and IL-18 is required for protection against inflammatory and septic shock. American Journal of Respiratory and Critical Care Medicine 189 (3): 282–291.CrossRef Berghe, T.V., D. Demon, P. Bogaert, et al. 2014. Simultaneous targeting of IL-1 and IL-18 is required for protection against inflammatory and septic shock. American Journal of Respiratory and Critical Care Medicine 189 (3): 282–291.CrossRef
26.
Zurück zum Zitat Millar, M.W., F. Fazal, and A. Rahman. 2022. Therapeutic Targeting of NF-κB in Acute Lung Injury: A Double-Edged Sword. Cells 11 (20): 1.CrossRef Millar, M.W., F. Fazal, and A. Rahman. 2022. Therapeutic Targeting of NF-κB in Acute Lung Injury: A Double-Edged Sword. Cells 11 (20): 1.CrossRef
27.
Zurück zum Zitat Singh, S., P. Gupta, A. Meena, et al. 2020. Acacetin, a flavone with diverse therapeutic potential in cancer, inflammation, infections and other metabolic disorders. Food and Chemical Toxicology 145: 111708.CrossRefPubMed Singh, S., P. Gupta, A. Meena, et al. 2020. Acacetin, a flavone with diverse therapeutic potential in cancer, inflammation, infections and other metabolic disorders. Food and Chemical Toxicology 145: 111708.CrossRefPubMed
28.
Zurück zum Zitat Wu, C., J. Yan, and W. Li. 2022. Acacetin as a Potential Protective Compound against Cardiovascular Diseases. Evid Based Complement Alternat Med 2022: 6265198.PubMedPubMedCentral Wu, C., J. Yan, and W. Li. 2022. Acacetin as a Potential Protective Compound against Cardiovascular Diseases. Evid Based Complement Alternat Med 2022: 6265198.PubMedPubMedCentral
29.
Zurück zum Zitat Li, S., Q. Lv, X. Sun, et al. 2020. Acacetin inhibits Streptococcus pneumoniae virulence by targeting pneumolysin. Journal of Pharmacy and Pharmacology 72 (8): 1092–1100.CrossRefPubMed Li, S., Q. Lv, X. Sun, et al. 2020. Acacetin inhibits Streptococcus pneumoniae virulence by targeting pneumolysin. Journal of Pharmacy and Pharmacology 72 (8): 1092–1100.CrossRefPubMed
30.
Zurück zum Zitat Li, S., X. Xu, L. Wei, et al. 2022. Acacetin Alleviates Listeria monocytogenes Virulence Both In Vitro and In Vivo via the Inhibition of Listeriolysin O. Foodborne Pathogens and Disease 19 (2): 115–125.CrossRefPubMed Li, S., X. Xu, L. Wei, et al. 2022. Acacetin Alleviates Listeria monocytogenes Virulence Both In Vitro and In Vivo via the Inhibition of Listeriolysin O. Foodborne Pathogens and Disease 19 (2): 115–125.CrossRefPubMed
31.
Zurück zum Zitat Xie, S., Y. Zhang, L. Xu, et al. 2022. Acacetin attenuates Streptococcus suis virulence by simultaneously targeting suilysin and inflammation. Microbial Pathogenesis 162: 105354.CrossRefPubMed Xie, S., Y. Zhang, L. Xu, et al. 2022. Acacetin attenuates Streptococcus suis virulence by simultaneously targeting suilysin and inflammation. Microbial Pathogenesis 162: 105354.CrossRefPubMed
33.
Zurück zum Zitat Chen, H., C. Bai, and X. Wang. 2010. The value of the lipopolysaccharide-induced acute lung injury model in respiratory medicine. Expert Review of Respiratory Medicine 4 (6): 773–783.CrossRefPubMed Chen, H., C. Bai, and X. Wang. 2010. The value of the lipopolysaccharide-induced acute lung injury model in respiratory medicine. Expert Review of Respiratory Medicine 4 (6): 773–783.CrossRefPubMed
34.
Zurück zum Zitat Bhatia, M., and S. Moochhala. 2004. Role of inflammatory mediators in the pathophysiology of acute respiratory distress syndrome. The Journal of Pathology 202 (2): 145–156.CrossRefPubMed Bhatia, M., and S. Moochhala. 2004. Role of inflammatory mediators in the pathophysiology of acute respiratory distress syndrome. The Journal of Pathology 202 (2): 145–156.CrossRefPubMed
36.
Zurück zum Zitat Sun, D., J. Xu, W. Zhang, et al. 2022. Negative regulator NLRC3: Its potential role and regulatory mechanism in immune response and immune-related diseases. Frontiers in Immunology 13: 1012459.CrossRefPubMedPubMedCentral Sun, D., J. Xu, W. Zhang, et al. 2022. Negative regulator NLRC3: Its potential role and regulatory mechanism in immune response and immune-related diseases. Frontiers in Immunology 13: 1012459.CrossRefPubMedPubMedCentral
37.
Zurück zum Zitat Uchimura, T., Y. Oyama, M. Deng, et al. 2018. The Innate Immune Sensor NLRC3 Acts as a Rheostat that Fine-Tunes T Cell Responses in Infection and Autoimmunity. Immunity 49 (6): 1049–1061.CrossRefPubMedPubMedCentral Uchimura, T., Y. Oyama, M. Deng, et al. 2018. The Innate Immune Sensor NLRC3 Acts as a Rheostat that Fine-Tunes T Cell Responses in Infection and Autoimmunity. Immunity 49 (6): 1049–1061.CrossRefPubMedPubMedCentral
38.
Zurück zum Zitat Zhou, J.T., K.D. Ren, J. Hou, et al. 2021. α-rhamnrtin-3-α-rhamnoside exerts anti-inflammatory effects on lipopolysaccharide-stimulated RAW264.7 cells by abrogating NF-κB and activating the Nrf2 signaling pathway. Molecular Medicine Reports 24 (5):):799. https://doi.org/10.3892/mmr.2021.12439. Epub 2021 Sep 15. PMID: 34523697; PMCID: PMC8456313. Zhou, J.T., K.D. Ren, J. Hou, et al. 2021. α-rhamnrtin-3-α-rhamnoside exerts anti-inflammatory effects on lipopolysaccharide-stimulated RAW264.7 cells by abrogating NF-κB and activating the Nrf2 signaling pathway. Molecular Medicine Reports 24 (5):):799. https://​doi.​org/​10.​3892/​mmr.​2021.​12439. Epub 2021 Sep 15. PMID: 34523697; PMCID: PMC8456313.
39.
Zurück zum Zitat Xu, J., C. Gao, Y. He, et al. 2023. NLRC3 expression in macrophage impairs glycolysis and host immune defense by modulating the NF-κB-NFAT5 complex during septic immunosuppression. Molecular Therapy 31 (1): 154–173.CrossRefPubMed Xu, J., C. Gao, Y. He, et al. 2023. NLRC3 expression in macrophage impairs glycolysis and host immune defense by modulating the NF-κB-NFAT5 complex during septic immunosuppression. Molecular Therapy 31 (1): 154–173.CrossRefPubMed
Metadaten
Titel
Acacetin Attenuates Sepsis-induced Acute Lung Injury via NLRC3-NF-κB Pathway
verfasst von
Yingchou Xiao
Bo Zhang
Shiyuan Hou
Xing Shen
Xingan Wu
Rongrong Liu
Ying Luo
Publikationsdatum
13.05.2024
Verlag
Springer US
Erschienen in
Inflammation
Print ISSN: 0360-3997
Elektronische ISSN: 1573-2576
DOI
https://doi.org/10.1007/s10753-024-02040-3

Leitlinien kompakt für die Innere Medizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Costims – das nächste heiße Ding in der Krebstherapie?

28.05.2024 Onkologische Immuntherapie Nachrichten

„Kalte“ Tumoren werden heiß – CD28-kostimulatorische Antikörper sollen dies ermöglichen. Am besten könnten diese in Kombination mit BiTEs und Checkpointhemmern wirken. Erste klinische Studien laufen bereits.

Perioperative Checkpointhemmer-Therapie verbessert NSCLC-Prognose

28.05.2024 NSCLC Nachrichten

Eine perioperative Therapie mit Nivolumab reduziert das Risiko für Rezidive und Todesfälle bei operablem NSCLC im Vergleich zu einer alleinigen neoadjuvanten Chemotherapie um über 40%. Darauf deuten die Resultate der Phase-3-Studie CheckMate 77T.

Positiver FIT: Die Ursache liegt nicht immer im Dickdarm

27.05.2024 Blut im Stuhl Nachrichten

Immunchemischer Stuhltest positiv, Koloskopie negativ – in solchen Fällen kann die Blutungsquelle auch weiter proximal sitzen. Ein Forschungsteam hat nachgesehen, wie häufig und in welchen Lokalisationen das der Fall ist.

GLP-1-Agonisten können Fortschreiten diabetischer Retinopathie begünstigen

24.05.2024 Diabetische Retinopathie Nachrichten

Möglicherweise hängt es von der Art der Diabetesmedikamente ab, wie hoch das Risiko der Betroffenen ist, dass sich sehkraftgefährdende Komplikationen verschlimmern.

Update Innere Medizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.